
A Framework for Software Product Line

Practice Version 4.2

Introduction

A product line is a set of products that together address a particular market segment or

fulfill a particular mission. Product lines are, of course, nothing new in manufacturing.

Boeing builds one, and so do Ford, Dell, and even McDonald's. Each of these companies

exploits commonality in different ways. Boeing, for example, developed the 757 and 767

transports in tandem, and the parts lists for these very two different aircraft overlap by

about 60%, achieving significant economies of production and maintenance. But software

product lines based on inter-product commonality are a relatively new concept that is

rapidly emerging as a viable and important software development paradigm. Product

flexibility is the anthem of the software marketplace, and product lines fulfill the promise

of tailor-made systems built specifically for the needs of particular customers or customer

groups. A product line succeeds because the commonalities shared by the software

products can be exploited to achieve economies of production. The products are built

from common assets in a prescribed way.

Companies are finding that this practice of building sets of related systems from common

assets can yield remarkable quantitative improvements in productivity, time to market,

product quality, and customer satisfaction. They are finding that a software product line

can efficiently satisfy the current hunger for mass customization. Organizations that

acquire, as opposed to build, software systems are finding that commissioning a set of

related systems as a commonly developed product line yields economies in delivery time,

cost, simplified training, and streamlined acquisition.

But along with the gains come risks. Using a product line approach constitutes a new

technical strategy for the organization. Organizational and management issues constitute

obstacles that are at least as critical to overcome and often add more risk because they are

less obvious. Building a software product line and bringing it to market requires a blend

of skillful engineering as well as both technical and organizational management.

Acquiring a software product line also requires this same blend of skills to position the

using organizations to effectively exploit the commonality of the incoming products, as

well as to lend sound technical oversight and monitoring to the development effort. These

skills are necessary to overcome the pitfalls that may bring failure to an unsophisticated

organization.

We've worked to gather information and identify key people with product line

experience. Through surveys, workshops, conferences, case studies, and direct

collaboration with organizations on product line efforts, we have amassed and

categorized a reservoir of information. Organizations that have succeeded with product

lines vary widely in

• the nature of their products

• their market or mission

• their business goals

• their organizational structure

• their culture and policies

• their software process discipline

• the maturity and extent of their legacy artifacts

Nevertheless, there are universal essential activities and practices that emerge, having to

do with the ability to construct new products from a set of common assets while working

under the constraints of various organizational contexts and starting points. This

document describes a framework
1
 for product line development. The framework is an on-

line product line encyclopedia; it is a web-based document describing the essential

activities and practices, in both the technical and organizational areas. These activities

and practices are those in which an organization must be competent before it can reap the

maximum benefit from fielding a product line of software or software-intensive systems.

The audience for this framework includes members of an organization who are in a

position to make or influence decisions regarding the adoption of product line practices

as well as those who are already involved in a product line effort.

Purpose

The goals of this framework are

• to identify the foundational concepts underlying software product lines and

the essential activities to consider before developing a product line

• to identify practice areas that an organization developing software product

lines must master
Although these practice areas may be required for engineering any software

system, the product line context imposes special constraints so that they must be

carried out in a non-conventional way.

• to define practices in each practice area, where current knowledge is

sufficient to do so
For example, "Configuration Management" is a practice area that applies to any

software development effort, but it has special implications for product line

development. Thus, we identify "Configuration Management" as a practice area,

but we also are able to define one or more effective configuration management

practices for product lines. In many cases, the definition of the practice is a

reference to a source outside this document.

• to provide guidance to an organization about how to move to a product line

approach for software

An organization using this framework should be able to understand the state of its

product line capabilities by (a) understanding the set of essential practice areas, (b)

assessing how practices in those areas differ from their conventional forms for single

product development, and (c) comparing that set of practices to the organization's

existing skill set.

As such, this framework can serve as the basis for a technology and improvement plan

aimed at achieving product line development goals.

Every organization is different and comes to the product line approach with different

goals, missions, assets, and requirements. Practices for a product line builder will be

different from those for a product line acquirer, and different still for a component

vendor. Appropriate practices will also vary according to

• the type of system being built

• the depth of domain experience

• the legacy assets on hand

• the organizational goals

• the maturity of artifacts and processes

• the skill level of the personnel available

• the production strategy embraced

• many other factors

There is no one correct set of practices for every organization; we do not prescribe a

methodology consisting of a set of specific practices. The framework is not a maturity

model
1
 or a process guide. We are prescriptive about the practice areas and we do

prescribe that organizations adopt appropriate practices in each practice area. This

document contains practices that we have seen work successfully.

The framework has been used by organizations, large and small, to help them plan for

their adoption of the product line approach, as well as to help them gauge how they're

doing and in what areas they're falling short. We use it to guide our collaborations with

customers and to focus in what areas our collaboration will best assist our customers. We

also use it as the basis for conducting Product Line Technical Probes, which are formal

diagnostics of an organization's product line fitness [Clements 01a, Chapter 8; see also

http://www.sei.cmu.edu/productlines/pltp.html]. The framework is a living, growing

document; it represents our best picture of sound product line practice as described to us

by its many reviewers and users: all of whom are practitioners. The framework is

specifically about software product lines and as such has served successfully as the basis

for technology and improvement plans aimed at achieving product line goals. We

understand that since its first release organizations have found the framework very useful

in product lines not related to software. We make no claims about its utility in non-

software contexts but recognize that many of the underlying principles and practices are

likely relevant.

What is a Software Product Line?

A software product line is a set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a prescribed way.

This definition is consistent with the definition traditionally given for any product line.

But it adds more; it puts constraints on the way in which the systems in a software

product line are developed. Why? Because substantial production economies can be

achieved when the systems in a software product line are developed from a common set

of assets in a prescribed way, in contrast to being developed separately, from scratch or in

an arbitrary fashion. It is exactly these production economies that make the software

product line approach attractive.

How is production made more economical? Each product is formed by taking applicable

components from the base of common assets, tailoring them as necessary through

preplanned variation mechanisms such as parameterization or inheritance, adding any

new components that may be necessary, and assembling the collection according to the

rules of a common, product-line-wide architecture. Building a new product (system)

becomes more a matter of assembly or generation than one of creation; the predominant

activity is integration rather than programming. For each software product line there is a

predefined guide or plan that specifies the exact product-building approach.

Certainly the desire for production economies is not a new business goal, and neither is a

product line solution. But a software product line is a relatively new idea, and it should

seem clear from our description that software product lines require a different technical

tack. The more subtle consequence is that software product lines require much more than

new technical practices.

The common set of assets and the plan for how they are used to build products don't just

materialize without planning, and they certainly don't come free. They require

organizational foresight, investment, planning, and direction. They require strategic

thinking that looks beyond a single product. The disciplined use of the common assets to

build products doesn't just happen either. Management must direct, track, and enforce the

use of the assets. Software product lines are as much about business practices as they are

about technical practices.

Software product lines give economies of scope, which means that you take economic

advantage of the fact that many of your products are very similar—not by accident, but

because you planned it that way. You make deliberate, strategic decisions and are

systematic in effecting those decisions.

What Software Product Lines Are Not

There are many approaches that at first blush could be confused with software product

lines. Describing what you don't mean is often as instructive as describing what you do

mean. When we speak of software product lines, we don't mean any of the following:

Fortuitous Small-Grained Reuse

Reuse, as a software strategy for decreasing development costs and improving quality, is

not a new idea, and software product lines definitely involve reuse—reuse, in fact, of the

highest order. So what's the difference? Past reuse agendas have focused on the reuse of

relatively small pieces of code—that is, small-grained reuse. Organizations have built

reuse libraries containing algorithms, modules, objects, or components. Almost anything

a software developer writes goes into the library. Other developers are then urged (and

sometimes required) to use what the library provides instead of creating their own

versions. Unfortunately, it often takes longer to locate these small pieces and integrate

them into a system than it would take to build them anew. Documentation, if it exists at

all, might explain the situation for which the piece was created but not how it can be

generalized or adapted to other situations. The benefits of small-grained reuse depend on

the predisposition of the software engineer to use what is in the library, the suitability of

what is in the library for the engineer's particular needs, and the successful adaptation and

integration of the library units into the rest of the system. If reuse occurs at all under these

conditions, it is fortuitous and the payoff is usually nonexistent.

In a software product line approach, the reuse is planned, enabled, and enforced—the

opposite of opportunistic. The asset base includes those artifacts in software development

that are most costly to develop from scratch—namely, the requirements, domain models,

software architecture, performance models, test cases, and components. All of the assets

are designed to be reused and are optimized for use in more than a single system. The

reuse with software product lines is comprehensive, planned, and profitable.

Single-System Development with Reuse

Suppose you are developing a new system that seems very similar to one you have built

before. You borrow what you can from your previous effort, modify it as necessary, add

whatever it takes, and field the product, which then assumes its own maintenance

trajectory separate from the first. What you have done is what is called "clone and own."

You certainly have taken economic advantage of previous work; you have reused a part

of another system. But now you have two entirely different systems, not two systems

built from the same base. This is again ad hoc reuse.

There are two major differences between this approach and a software product line

approach. First, software product lines reuse assets that were designed explicitly for

reuse. Second, the product line is treated as a whole not as multiple products that are

viewed and maintained separately. In mature product line organizations, the concept of

multiple products disappears. Each product is simply a tailoring of the common assets,

which constitute the core of each product, plus perhaps a small collection of additional

artifacts unique to that product. It is the core assets that are designed carefully and

evolved over time. It is the core assets that are the organization's premiere intellectual

property.

Just Component-Based Development

Software product lines rely on a form of component-based development, but much more

is involved. The typical definition of component-based development involves the

selection of components from an in-house library or the marketplace to build products.

Although the products in software product lines certainly are composed of components,

these components are all specified by the product line architecture. Moreover, the

components are assembled in a prescribed way, which includes exercising built-in

variability mechanisms in the components to put them to use in specific products. The

prescription comes from both the architecture and the production plan, and is missing

from standard component-based development. In a product line, the generic form of the

component is evolved and maintained in the core asset base. In component-based

development, if any variation is involved, it is usually accomplished by writing code, and

the variants are most likely maintained separately. Component-based development also

lacks the technical and organizational management aspects that are so important to the

success of a software product.

Just a Reconfigurable Architecture

Reference architectures and object-oriented frameworks are designed to be reused in

multiple systems and to be reconfigured as necessary. Reusing architectural structures is

a good idea because the architecture is a pivotal part of any system and a costly one to

construct. A product line architecture is designed to support the variation needed by the

products in the product line, and so making it reconfigurable makes sense. But the

product line architecture is just one asset, albeit an important one, in the product line's

core asset base.

Releases and Versions of Single Products

Organizations routinely produce new releases and versions of products. Each of these

new versions and releases is typically constructed using the architecture, components, test

plans, and other features of the prior releases. Why are software product lines different?

First, in a product line there are multiple simultaneous products, all of which are going

through their own cycles of release and versioning simultaneously. Thus, the evolution of

a single product must be considered within a broader context—namely, the evolution of

the product line as a whole. Second, in a single-product context, once a product is

updated there's often no looking back—whatever went into the production of earlier

products is no longer considered to be of any value, or at best, retired as soon as

practicable. But in a product line, an early version of a product that is still considered to

have market potential can easily be kept as a viable member of the family: it is, after all,

an instantiation of the core assets, just like other versions of other products.

Just a Set of Technical Standards

Many organizations set up technical standards to limit the choices their software

engineers can make regarding the kinds and sources of components to incorporate in

systems. They audit for compliance at architecture and design reviews to ensure that the

standards are being followed. For example, the developer might be able to select between

three identified database choices and two identified Web browsers, but must use a

specific middleware or spreadsheet product if either is necessary. Technical standards are

constraints to promote interoperability and to decrease the cost associated with

maintenance and support of commercial components. An organization that undertakes a

product line effort may have such technical standards, in which case the product line

architecture and components will need to conform to those standards. However, the

standards are simply constraints that are input to the software product line, no more.

Benefits and Costs of a Product Line

Software product line approaches accrue benefits at multiple levels. This section lists the

benefits (and some of the costs) from the perspective of the organization as a whole,

individuals within the organization, and the core assets involved in software product line

production.

Organizational Benefits

The organizations that we have studied
1
 have achieved remarkable benefits that are

aligned with commonly held business goals. Some of these include:

• large-scale productivity gains

• decreased time-to-market

• increased product quality

• increased customer satisfaction

• more efficient use of human resources

• ability to effect mass customization

• ability to maintain market presence

• ability to sustain unprecedented growth

These benefits give organizations a competitive advantage. They are derived from the

reuse of the core assets in a strategic and prescribed way. Once the product line core asset

repository is established, there is a direct savings each time a product is built, associated

with each of the following:

• Requirements: There are common product line requirements. Product

requirements are deltas to this established requirements base. Extensive

requirements analysis is saved. Feasibility is assured.

• Architecture: An architecture for a software system represents a large investment

of time from the organization's most talented engineers. The quality goals for a

system—its performance, reliability, modifiability, and so on—are largely

allowed or precluded once the architecture is in place. If the architecture is wrong,

the system cannot be saved. The product line architecture is used for each product

and need only be instantiated. Considerable time and risk are spared.

• Components: Up to 100% of the components in the core asset base are used in

each product. These components may need to be altered using inheritance or

parameters, but the design is intact, as are data structures and algorithms. In

addition, the product line architecture provides component specifications for all

but any unique components that may be necessary.

• Modeling and analysis: Performance models and the associated analyses are

existing product line core assets. With each new product there is extremely high

confidence that the timing problems have been worked out and that the bugs

associated with distributed computing—synchronization, network loading, and

absence of deadlock—have been eliminated.

• Testing: Generic test plans, test processes, test cases, test data, test harnesses, and

the communication paths required to report and fix problems have already been

built. They need only be tailored on the basis of the variations related to the

product.

• Planning: The production plan has already been established. Baseline budgets

and schedules from previous product development projects already exist and

provide a reliable basis for the product work plans.

• Processes: Configuration control boards, configuration management tools and

procedures, management processes, and the overall software development process

are in place, have been used before, and are robust, reliable, and responsive to the

organization's special needs.

• People: Fewer people are required to build products and the people are more

easily transferred across the entire line.

Product lines enhance quality. Each new system takes advantage of all of the defect

elimination in its forebears; developer and customer confidence both rise with each new

instantiation. The more complicated the system, the higher the payoff for solving the

vexing performance, distribution, reliability, and other engineering issues once for the

entire family.

Individual Benefits

The benefits to individuals within an organization depend upon their respective roles. The

following table shows observed benefits for some of the individual stakeholders in the

product line organization.

Product Line Benefits for Individual Stakeholders

Stakeholder
Role

Benefits

CEO Large productivity gains; greatly improved time to market; sustained growth
and market presence; ability to economically capture a market niche.

COO Efficient use of work force; ability to explore new markets, new technology,
and/or new products; fluid personnel pool.

Technical
Manager

Increased predictability; well-established roles and responsibilities; efficient
production.

Software Product Higher morale; greater job satisfaction; can focus on truly unique aspects of

Developer products; easier software integration; fewer schedule delays; greater mobility
within the organization; more marketable; have time to learn new technology;
are part of a team building products with an established quality record and
reputation.

Architect or Core
Asset Developer

Greater challenge; work has more impact; prestige within the organization; as
marketable as the product line.

Marketer Predictable high quality products; predictable delivery; can sell products with a
pedigree.

Customer Higher quality products; predictable delivery date; predictable cost; known
costs for unique requirements; well-tested training materials and
documentation; shared maintenance costs; potential to participate in a user's
group.

End User Fewer defects; better training materials and documentation; a network of other
users.

Benefits versus Costs

We have established that the strategic reuse of core assets that defines product line

practice represents an opportunity for benefits across the board, but the picture is not yet

complete. Launching a software product line is a business decision that should not be

made randomly. Any organization that launches a product line should have in mind

specific and solid business goals that it plans to achieve through product line practice.

Moreover, the benefits given above should align carefully with the achievement of those

goals, because a software product line requires a substantial start-up investment as well as

ongoing costs to maintain the core assets. We have already listed the benefits associated

with the reuse of particular core assets. Usually a cost and a caveat are associated with

the achievement of each benefit. The following table gives a partial list of core assets

with the typical additional costs. We repeat the benefits for the sake of comparison.

Costs and Benefits of Product Lines

Core Asset Benefit Additional Cost

Requirements: The
requirements are written for
the group of systems as a
whole, with requirements for
individual systems specified
by a delta or an increment to
the generic set.

Commonality and variation are
documented explicitly, which will
help lead to an architecture for
the product line. New systems in
the product line will be much
simpler to specify because the
requirements are reused and
tailored.

Capturing requirements for a
group of systems may require
sophisticated analysis and
intense negotiation to agree on
both common requirements and
variation points acceptable for all
the systems.

Architecture: The
architecture for the product
line is the blueprint for how
each product is assembled
from the components in the
core asset base.

Architecture represents a
significant investment by the
organization's most talented
engineers. Leveraging this
investment across all products in
the product line means that for
subsequent products, the most
important design step is largely
completed.

The architecture must support
the variation inherent in the
product line, which imposes an
additional constraint on the
architecture and requires greater
talent to define.

Software components:
The software components
that populate the core asset
base form the building
blocks for each product in
the product line. Some will
be reused without alteration.
Others will be tailored
according to prespecified
variation mechanisms.

The interfaces for components
are reused. For actual
components that are reused, the
design decisions, data
structures, algorithms,
documentation, reviews, code,
and debugging effort can all be
leveraged across multiple
products in the product line.

The components must be
designed to be robust and
extensible so that they are
applicable across a range of
product contexts. Variation points
must be built in or at least
anticipated. Often, components
must be designed to be more
general without loss of
performance.

Performance modeling
and analysis: For products
that must meet real-time
constraints (and some that
have soft real-time
constraints), analysis must
be performed to show that
the system's performance
will be adequate.

A new product can be fielded
with high confidence that real-
time and distributed-systems
problems have already been
worked out, because the
analysis and modeling can be
reused from product to product.
Process scheduling, network
traffic loads, deadlock
elimination, data consistency
problems, and the like will all
have been modeled and
analyzed.

Reusing the analysis may
impose constraints on moving of
processes among processors, on
creation of new processes, or on
synchronization of existing
processes.

Business case, market
analysis, marketing
collateral, cost and
schedule estimates: These
are the up-front business
necessities involved in any
product. Generic versions
are built that support the
entire product line.

All of the business and
management artifacts involved in
turning out already exist at least
in a generic form and can be
reused.

All of these artifacts must be
generic, or be made extensible to
accommodate product variations.

Tools and processes for
software development and
for making changes: The
infrastructure for turning out
a software product requires
specific product line
processes and appropriate
tool support.

Configuration control boards,
configuration management tools
and procedures, management
processes, and the overall
software development process
are in place and have been used
before. Tools and environments
purchased for one product can
be amortized across the entire
product line.

The boards, process definitions,
tools, and procedures must be
more robust to account for
unique product line needs and
for the differences between
managing a product line and
managing a single product.

Test cases, test plans, test
data: There are generic
testing artifacts for the entire
set of products in the
product line with variation
points to accommodate
product variation.

Test plans, test cases, test
scripts, and test data have
already been developed and
reviewed for the components
that are reused. Testing artifacts
represent a substantial
organizational investment. Any
saving in this area is a benefit.

All of the testing artifacts must be
more robust because they will
support more than one product.
They also must be extensible to
accommodate variation among
the products.

People, skills, training: In
a product line organization,
even though members of the

Because of the commonality of
the products and the production
process, personnel can be more

Personnel must be trained
beyond general software
engineering and corporate

development staff may work
on a single product at a
time, they are in reality
working on the entire
product line. The product
line is a single entity that
embraces multiple products.

easily transferred among product
projects as required. Their
expertise is usually applicable
across the entire product line.
Their productivity, when
measured by the number of
products to which their work
applies, rises dramatically.
Resources spent on training
developers to use processes,
tools, and system components
are expended only once.

procedures to ensure that they
understand software product line
practices and can use the core
assets and procedures
associated with the product line.
New personnel must be much
more specifically trained for the
product line. Training materials
must be created that address the
product line. As product lines
mature, the skills required in an
organization tend to change,
away from programming and
toward relevant domain expertise
and technology forecasting. This
transition must be managed.

For each of these core assets, the investment cost is usually much less than the value of

the benefit. Also, most of the costs are up-front costs associated with establishing the

product line. The benefits, on the other hand, accrue with each new product release. Once

the approach is established, the organization's productivity accelerates rapidly and the

benefits far outweigh the costs. However, an organization that attempts to institute a

product line without being aware of the costs is likely to abandon the product line

concept before seeing it through.

It takes a certain degree of maturity in the developing organization to field a product line

successfully. Technology change is not the only barrier to successful product line

adoption. Changes in management and organizational practices are also involved.

Successful adoption of software product line practice is a careful blend of technological,

process, organizational, and business improvements.

Organizations of all stripes have enjoyed quantitative benefits from their product lines.

Product line practitioners have also shared with us examples of the costs, such as:

• canceling three large projects so that sufficient resources could be devoted to the

up-front development of core assets

• reassigning staff who could not adjust to the product line way of doing business

• suspending product delivery for an extended period while putting the new

practices into place

Certainly not every organization must undergo such dramatic measures in order to adopt

the software product line approach. And the companies that bore these costs and made

the successful transition to product line practice all agree that the payoff more than

compensated for the effort. But these costs underscore the point that product line practice

is often uncharted territory and may not be the right path for every organization.

1. The SEI has published several detailed case studies of successful product line organizations and the benefits they have enjoyed. These may

be found in [Clements 01a] as well as http://www.sei.cmu.edu/productlines/plp_publications.html

A Note on Terminology

In this document we use the following terms:

A software product line is a set of software-intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a prescribed way.

This is the definition we provided in What is a Software Product Line.

Core assets are those reusable artifacts and resources that form the basis for the software

product line. Core assets often include, but are not limited to, the architecture, reusable

software components, domain models, requirements statements, documentation and

specifications, performance models, schedules, budgets, test plans, test cases, work plans,

and process descriptions. The architecture is key among the collection of core assets.

Development is a generic term used to describe how core assets (or products) come to

fruition. Software enters an organization in any one of three ways: the organization can

build it itself (either from scratch or by mining legacy software), purchase it (buy it,

largely unchanged, off the shelf), or commission it (contract with someone else to

develop it especially for them). So our use of the term "development" may actually

involve building, acquisition, purchase, retrofitting earlier work, or any combination of

these options. We recognize and address these options, but we use "development" as the

general term.

A domain is a specialized body of knowledge, an area of expertise, or a collection of

related functionality. For example, the telecommunications domain is a set of

telecommunications functionality, which in turn consists of other domains such as

switching, protocols, telephony, and network. A telecommunications software product

line is a specific set of software systems that provide some of that functionality.

Software product line practice is the systematic use of core assets to assemble,

instantiate, or generate the multiple products that constitute a software product line. The

choice of verb depends on the production approach for the product line. Software product

line practice involves strategic, large-grained reuse.

Some practitioners use a different set of terms to convey essentially the same meaning. In

this alternate terminology, a product line is a profit and loss center concerned with

turning out a set of products; it refers to a business unit, not a set of products. The

product family is that set of products, which we call the product line. The core asset base

is called the platform. Previously, what we call core asset development was often referred

to as domain engineering and what we call product development was referred to as

application engineering.

The terminology is not as important as the concepts. That having been said, you might

encounter different sets of terms in other places and should be able to translate between

them.

Starting Versus Running a Product Line

Many of the practice areas in this framework are written from the point of view of

describing an in-place product line capability. We recognize that the framework will be

used to help an organization put that capability in place, and ramping up to a product line

is in many ways different than running one on a day-to-day basis.

We felt it was important to describe the end or "steady state" so that readers could

understand the goals. However, to address the issues of starting (rather than running) a

product line shop, the reader is referred to the "Launching and Institutionalizing" practice

area.

Product Line Essential Activities

At its essence, fielding of a product line involves core asset development and product

development using the core assets, both under the aegis of technical and organizational

management. Core asset development and product development from the core assets can

occur in either order: new products are built from core assets, or core assets are extracted

from existing products. Often, products and core assets are built in concert with each

other. The following figure illustrates this triad of essential activities.

The Three Essential Activities for Software Product Lines

Each rotating circle represents one of the essential activities. All three are linked together

and in perpetual motion, showing that all three are essential, are inextricably linked, can

occur in any order, and are highly iterative.

The rotating arrows indicate not only that core assets are used to develop products, but

also that revisions of existing core assets or even new core assets might, and most often

do, evolve out of product development. The diagram in the above figure is neutral in

regard to which part of the effort is launched first. In some contexts, already existing

products are mined for generic assets—perhaps a requirements specification, an

architecture, or software components—which are then migrated into the product line's

core asset base. In other cases, the core assets may be developed or procured for later use

in the production of products.

There is a strong feedback loop between the core assets and the products. Core assets are

refreshed as new products are developed. Use of core assets is tracked, and the results are

fed back to the core asset development activity. In addition, the value of the core assets is

realized through the products that are developed from them. As a result, the core assets

are made more generic by considering potential new products on the horizon. There is a

constant need for strong, visionary management to invest resources in the development

and sustainment of the core assets. Management must also precipitate the cultural change

to view new products in the context of the available core assets. Either new products must

align with the existing core assets, or the core assets must be updated to reflect the new

products that are being marketed. Iteration is inherent in product line activities—that is,

in turning out core assets, in turning out products, and in the coordination of the two. In

the next three sections we examine the three essential activities in greater detail.

Core Asset Development

The goal of the core asset development activity is to establish a production capability for

products. The following figure illustrates the core asset development activity along with

its outputs and necessary inputs.

Core Asset Development

This activity, like its counterparts, is iterative. The rotating arrows suggest that there is no

one-way causal relationship from inputs to outputs; the inputs and outputs of this activity

affect each other. For example, slightly expanding the product line scope (one of the

outputs) may admit whole new classes of systems to examine as possible sources of

legacy assets (one of the inputs). Similarly, an input production constraint (such as

mandating the use of a particular middleware product) may lead to restrictions on the

architectural patterns (other inputs) that will be considered for the product line as a whole

(such as the message-passing distributed object pattern). This restriction, in turn, will

determine which preexisting assets are candidates for reuse or mining (still other inputs).

Three things are required for a production capability to develop products, and these three

things are the outputs of the core asset development activity.

1. Product line scope:
The product line scope is a description of the products that will constitute the

product line or that the product line is capable of including. At its simplest, scope

may consist of an enumerated list of product names. More typically, this

description is cast in terms of the things that the products all have in common, and

the ways in which they vary from one another. These might include features or

operations they provide, performance or other quality attributes they exhibit,

platforms on which they run, and so on.

Defining the product line scope is often referred to as scoping. For a product line

to be successful, its scope must be defined carefully. If the scope is too large and

product members vary too widely, then the core assets will be strained beyond

their ability to accommodate the variability, economies of production will be lost,

and the product line will collapse into the old-style one-at-a-time product

development effort. If the scope is too small, then the core assets might not be

built in a generic enough fashion to accommodate future growth, and the product

line will stagnate: economies of scope will never be realized, and the full potential

return on investment will never materialize.

The scope of the product line must target the right products, as determined by

knowledge of similar products or systems, the prevailing or predicted market

factors, the nature of competing efforts, and the organization's business goals for

embarking on a product line approach (such as merging a set of similar but

currently independent product development projects).

The scope definition of a product line is itself a core asset, evolved and

maintained over the product line's lifetime. Because it determines so much about

the other core assets – in particular, what products they can support – we call it

out separately.

2. Core assets:
Core assets are the basis for production of products in the product line. As we

have already described, these core assets almost certainly include an architecture

that the products in the product line will share, as well as software components

that are developed for systematic reuse across the product line. Any real-time

performance models or other architecture evaluation results associated with the

product line architecture are core assets. Software components may also bring

with them test plans, test cases, and all manner of design documentation.

Requirements specifications and domain models are core assets, as is the

statement of the product line's scope. Commercial off-the-shelf (COTS) software,

if adopted, also constitute core assets. So do management artifacts such as

schedules, budgets, and plans. Also, any production infrastructure such as

domain-specific languages, tools, generators, and environments are core assets as

well.

Among the core assets, the architecture warrants special treatment. A product line

architecture is a software architecture that will satisfy the needs of the product

line in general and the individual products in particular by explicitly admitting a

set of variation points required to support the spectrum of products within the

scope. The product line architecture plays a special role among the other core

assets. It specifies the structure of the products in the product lines and provides

interface specifications for the components that will be in the core asset base.

Producing a product line architecture requires the product line scope (discussed

above); a knowledge of relevant patterns and frameworks; and any available

inventory of preexisting assets (all discussed below).

Each core asset should have associated with it an attached process that specifies

how it will be used in the development of actual products. For example, the

attached process for a set of product line requirements would give the process to

follow when expressing the requirements for an individual product. This process

might simply say: (1) use the product line requirements as the baseline

requirements, (2) specify the variation requirement for any allowed variation

point, (3) add any requirements outside the set of specified product line

requirements, and (4) validate that the variations and extensions can be supported

by the architecture. The process might also specify the automated tool support for

accomplishing these steps. These attached processes are themselves core assets

that get folded into what becomes the production plan for the product line. The

following figure illustrates this concept of attached processes and how they are

incorporated into the production plan.

Attached Processes

There are also core assets at a less technical level—namely, the training specific

to the product line, the business case for use of a product line approach for this

particular set of products, the technical management process definitions

associated with the product line, and the set of identified risks for building

products in the product line. Although not every core asset will necessarily be

used in every product in the product line, all will be used in enough of the

products to make their coordinated development, maintenance, and evolution pay

off.

Finally, part of creating the core asset base is defining how that core asset base

will be updated as the product line evolves, as more resources become available,

as fielded products are maintained, and as technological changes or market shifts

affect the product line scope.

3. Production plan:
A production plan prescribes how the products are produced from the core assets.

As noted above, core assets should each have an attached process that defines

how it will be used in product development. The production plan is essentially a

set of these attached processes with the necessary glue. It describes the overall

scheme for how these individual processes can be fitted together to build a

product. It is, in effect, the reuser's guide to product development within the

product line. Each product in the product line will vary consistent with predefined

variation points. How these variation points can be accommodated will vary from

product line to product line. For example, variation could be achieved by selecting

from an assortment of components to provide a given feature, by adding or

deleting components, or by tailoring one or more components via inheritance or

parameterization. It could also be the case that products are generated

automatically. The exact vehicle to be used to provide the requisite variation

among products is described in the production plan. Without the production plan,

the product builder would not know the linkage among the core assets or how to

utilize them effectively and within the constraints of the product line.

To develop a production plan, you need to understand who will be building the

products—the audience for the production plan. Knowing who the audience is

will give you a better idea how to format the production plan. Production plans

can range from a detailed process model to a much more informal guidebook. The

degree of specificity required in the production plan depends on the background

of the intended product builders, the structure of the organization, the culture of

the organization, and the concept of operations for the product line. It will be

useful to have at least a preliminary definition of the product line organization

before developing the production plan.

The production plan should describe how specific tools are to be applied in order

to use, tailor, and evolve the core assets. The production plan should also

incorporate any metrics defined to measure organizational improvement as a

result of the product line (or other process improvement) practices and the plan

for collecting the data to feed those metrics.

For more information on production plans, see [Chastek 02b].

As will be seen in Product Development, these three outputs are necessary ingredients for

feeding the product development activity, which turns out products that serve a particular

customer or market niche.

The inputs to the core asset development activity are as follows.

1. Product constraints: What are the commonalities and variations among the

products that will constitute the product line? What behavioral features do they

provide? What features do the market and technology forecasts say will be

beneficial in the future? What commercial, military, or company-specific

standards apply to the products? What performance limits must they observe?

With what external systems must they interface? What physical constraints must

be observed? What quality requirements (such as availability and security) are

imposed? The core assets must capitalize on the commonalities and accommodate

envisioned variation with minimal tradeoff to product quality drivers such as

security, reliability, usability, and so on. These constraints may be derived from a

set of pre-existing products that will form the basis for the product line, or they

may be generated anew, or some combination of two.

2. Production constraints: Must a new product be brought to market in a year, a

month, or a day? What production capability must be given to engineers in the

field? Answering these and similar questions will drive decisions about, for

example, whether to invest in a generator environment or rely on manual coding.

This in turn will drive decisions about what kind of variability mechanisms to

provide in the core assets, and what form the overall production plan will take.

3. Production strategy: The production strategy is the overall approach for

realizing the core assets and products. Will the product line be built proactively

(starting with a set of core assets and spinning products off of them), reactively

(starting with a set of products and generalizing their components to produce the

product line core assets), or using some combination (see "All Three Together")?

What will the transfer pricing strategy be—that is, how will the cost of producing

the generic components be divided among the cost centers for the products? Will

generic components be produced internally or purchased on the open market?

Will products be automatically generated from the assets or will they be

assembled? How will production of core assets be managed? The production

strategy dictates the genesis of the architecture and associated components and the

path for their growth.

4. Inventory of preexisting assets: Legacy systems embody an organization's

domain expertise and/or define its market presence. The product line architecture,

or at least pieces of it, may borrow heavily from proven structures of related

legacy systems. Components may be mined from legacy systems. Such

components may represent key intellectual property of the organization in

relevant domains and therefore become prime candidates for components in the

core asset base. What software and organizational assets are available at the outset

of the product line effort? Are there libraries, frameworks, algorithms, tools, and

components that can be utilized? Are there technical management processes,

funding models, and training resources that can be easily adapted for the product

line? The inventory includes all potential preexisting assets. Through careful

analysis, an organization determines what is most appropriate to utilize. But

preexisting assets are not limited to assets that were built by the product line

organization. COTS and open-source products, as well as standards, patterns, and

frameworks, are prime examples of preexisting assets that can be imported from

outside the organization and used to good advantage.

Product Development

The product development activity depends on the three outputs described above—the

product line scope, the core assets, and the production plan—plus the requirements for

each individual product. The following figure illustrates these relationships.

Product Development

Once more, the rotating arrows indicate iteration and intricate relationships. For example,

the existence and availability of a particular product may well affect the requirements for

a subsequent product. As another example, building a product that has previously

unrecognized commonality with another product already in the product line will create

pressure to update the core assets and provide a basis for exploiting that commonality for

future products.

The inputs for the product development activity are as follows:

• the requirements for a particular product, often expressed as a delta or variation

from some generic product description contained in the product line scope (such a

generic description is itself a core asset) or as a delta from the set of product line

requirements (themselves a core asset).

• the product line scope, which indicates whether or not the product under

consideration can be feasibly included in the product line

• the core assets from which the product is built

• the production plan, which details how the core assets are to be used to build the

product

A software product line is, fundamentally, a set of related products, but how they come

into existence can vary greatly depending on the core assets, the production plan, and the

organizational context. From a very simple view, requirements for a product that is in the

product line scope are received, and the production plan is followed so that the core

assets can be properly used to develop the product. If the production plan is a more

informal document, the product builders will need to build a product development plan

that follows the guidance given. If the production plan is documented as a generic

process description, the product builders will instantiate the production plan, recognizing

the variation points being selected for the given product.

However, the process is rarely, if ever, so linear. The creation of products may have a

strong feedback effect on the product line scope, the core assets, the production plan, and

even the requirements for specific products. The ability to turn out a particular member of

the product line quickly—perhaps a member that was not originally envisioned by the

people responsible for defining the scope—will in turn affect the product line scope

definition. Each new product may have similarities with other products that can be

exploited by creating new core assets. As more products enter the field, efficiencies of

production may dictate new system generation procedures, causing the production plan to

be updated.

Management

Management plays a critical role in the successful fielding of a product line. Activities

must be given resources, coordinated, and supervised. Management at both the technical

(or project) and organizational levels must be strongly committed to the software product

line effort. That commitment manifests itself in a number of ways that feed the product

line effort and keep it healthy and vital. Technical management oversees the core asset

development and to the product development activities by ensuring that the groups who

build core assets and the groups who build products are engaged in the required activities,

follow the processes defined for the product line, and collect data sufficient to track

progress.

Organizational management must set in place the proper organizational structure that

makes sense for the enterprise, and must make sure that the organizational units receive

the right resources (for example, well-trained personnel) in sufficient amounts. We define

organizational management as the authority that is responsible for the ultimate success or

failure of the product line effort. Organizational management determines a funding model

that will ensure the evolution of the core assets and then provides the funds accordingly.

Organizational management also orchestrates the technical activities in and iterations

between the essential activities of core asset development and product development.

Management should ensure that these operations and the communication paths of the

product line effort are documented in an operational concept. Management mitigates

those risks at the organizational level that threaten the success of the product line. The

organization's external interfaces also need careful management. Product lines tend to

engender different relationships with an organization's customers and suppliers, and these

new relationships must be introduced, nurtured, and strengthened. One of the most

important things that management must do is create an adoption plan that describes the

desired state of the organization (that is, routinely producing products in the product

lines) and a strategy for achieving that state.

Both technical and organizational management also contribute to the core asset base by

making available for reuse those management artifacts (especially schedules and budgets)

used in developing products in the product line.

Finally, someone should be designated as the product line manager and that person must

either act as or find and empower a product line champion. This person must be a strong,

visionary leader who can keep the organization squarely pointed toward the product line

goals, especially when the going gets rough in the early stages. Leadership is required for

software product line success. Management and leadership are not always synonymous.

All Three Together

Each of the three activities—core asset development, product development, and

management—is individually essential, and careful blending of all three is also

essential—a blend of technology and business practices. Different organizations may take

different paths through the three activities. The path they take is a manifestation of their

production strategy, as described in "Core Asset Development."

Many organizations begin a software product line by developing the core assets first.

These organizations take a proactive approach [Krueger 01]. They define their product

line scope to define the set (more often, a space) of systems that will constitute their

product line. This scope definition provides a kind of mission statement for designing the

product line architecture, components, and other core assets with the right built-in

variation points to cover the scope. Producing any product within that scope becomes a

matter of exercising the variation points of the components and architecture—that is,

configuring—and then assembling and testing the system. Other organizations begin with

one or a small number of products they already have and from these generate the product

line core assets and future products. They take a reactive approach.

Both of these approaches may be attacked iteratively. For example, a proactive approach

may begin with the production of only the most important core assets, rather than all of

them. Early products use those core assets. Subsequent products are built using more core

assets as they are added to the collection. Eventually, the full core asset base is fielded;

earlier products may or may not be reengineered to use the full collection. An iterative

reactive approach works similarly; the core asset based is populated sparsely at first,

using existing products as the source. More core assets are added as time and resources

permit.

The proactive approach has obvious advantages—products come to market extremely

quickly with a minimum of code-writing. But there are also disadvantages. It requires a

significant up-front investment to produce the architecture and the components that are

generic (and reliable) across the entire product space. And it also requires copious up-

front predictive knowledge, something that is not always available. In organizations that

have long been developing products in a particular application domain, this is not a

tremendous disadvantage. For a green field effort, where there is no experience or

existing products, this is an enormous risk.

The reactive approach has the advantage of a much lower cost of entry to software

product lines because the core asset base is not built up front. However, for the product

line to be successful, the architecture and other core assets must be robust, extensible, and

appropriate to future product line needs. If the core assets are not built beyond the ability

to satisfy the specific set of products already in the works, extending them for future

products may prove too costly.

Product Line Practice Areas

Product Line Essential Activities of this framework introduced three essential activities

that are involved in developing a software product line. These are (1) core asset

development, (2) product development, and (3) management. This section defines in

more detail what an organization must do to perform those broad essential activities. We

do this by defining practice areas. A practice area is a body of work or a collection of

activities that an organization must master to successfully carry out the essential work of

a product line. Practice areas help to make the essential activities more achievable by

defining activities that are smaller and more tractable than a broad imperative such as

"Develop core assets." Practice areas provide starting points from which organizations

can make (and measure) progress in adopting a product line approach for software.

So, to achieve a software product line you must carry out the three essential activities. To

be able to carry out the essential activities you must master the practice areas relevant to

each. By "mastering," we mean an ability to achieve repeatable, not just one-time,

success with the work.

Almost all of the practice areas describe activities that are essential for any successful

software development, not just software product lines. However, they all either take on

particular significance or must be carried out in a unique way in a product line context.

Those aspects that are specifically relevant to software product lines, as opposed to

single-system development, will be emphasized.

Describing the Practice Areas

For each practice area we present the following information:

• An introductory overview of the practice area that summarizes what it's about.

You will not find a definitive discourse on the practice area here, since in most

cases there is overlap with what can be found in traditional software engineering

and management reference books. We provide a few basic references if you need

a refresher.

• Those aspects of the practice area that apply especially to a product line, as

opposed to a single system. Here you will learn in what ways traditional software

and management practice areas need to be refocused or tailored to support a

product line approach.

• How the practice area is applied to core asset development and product

development, respectively. We separate these two essential activities; although in

most cases a given practice area applies to both of these broad areas, the lens that

you look through to focus changes when you are building products versus

developing core assets.

• A description of any specific practices that are known to apply to the practice

area. A specific practice describes a particular way of accomplishing the work

associated with a practice area. Specific practices are not meant to be end-to-end

methodological solutions to carrying out a practice area but approaches to the

problem that have been used in practice to build product lines. Whether or not a

specific practice will work for your organization depends on context.

• Known risks associated with the practice area. These are ways in which a practice

area can go wrong, to the detriment of the overall product line effort. Our

understanding of these risks is borne out of the pitfalls of others in their product

line efforts.

• A list of references for further reading, to support your investigation in areas

where you desire more depth.

There are other kinds of information associated with each practice area, although these

are not called out in the description. When planning to carry out the practice area, be sure

to keep the following in mind:

• For each practice area, make a work plan for carrying it out. The work plan

should specify the plan owner, specific tasks, who is responsible for doing them,

what resources those people will be given, and when the results are due. More

information about planning for product lines can be found in the "Technical

Planning" and "Organizational Planning" practice areas.

• For each practice area, define metrics associated with tracking its completion and

measuring its success. These metrics will help an organization identify where the

practice areas are (or are not) being executed in a way that is meeting the

organization's goals. More information about planning for measurement can be

found in the "Data Collection, Metrics, and Tracking" practice area.

• Many practice areas produce tangible artifacts. For each practice area that does so,

make a plan for keeping its produced artifacts up to date and identify the set of

stakeholders who hold a vested interest in the artifacts produced. Collect

organizational plans for artifact evolution and sustainment, and stakeholder

definitions, in your product line's operational concept, which is discussed in the

"Operations" practice area.

• Many practice areas lead to the creation of core assets of some sort. For those that

do, define and document an attached process that tells how the core assets are

used (modified, instantiated, and so on) to build products. These attached

processes together form the production plan for the product line. The "Process

Definition" practice area describes the essential ingredients for defining these

(and other) processes. The "Operations" and "Architecture Definition" practice

areas describe documents for containing some of them.

Organizing the Practice Areas

Since there are so many practice areas, we need a way of organizing them for easier

access and reference. We divide them loosely into three categories:

1. Software engineering practice areas are those necessary to apply the appropriate
technology to create and evolve both core assets and products.

2. Technical management practice areas are those management practices necessary
to engineer the creation and evolution of the core assets and the products.

3. Organizational management practice areas are those necessary for the
orchestration of the entire software product line effort.

Each of these categories appeals to a different body of knowledge and requires a different

skill set for the people needed to carry them out. The categories represent disciplines

rather than job titles.

There is no way to divide cleanly into practice areas the knowledge necessary to achieve

a software product line. Some overlap is inevitable. We have chosen what we hope to be

a reasonable scheme and have identified practice area overlap where possible.

The description of practice areas that follows is an encyclopedia; neither the ordering nor

the categorization constitutes a method or an order for application. In other works we

provide product line practice patterns that show how to put the practice areas into play for

a particular organization's context and goals [Clements 01a].

Software Engineering Practice Areas

Software engineering practice areas are those practice areas that are necessary for

application of the appropriate technology to the creation and evolution of both core assets

and products. They are carried out in the technical activities represented by the top two

circles in the follow figure.

Software Engineering Practice Areas and the Essential Product Line Activities

In alphabetical order, they are:

• Architecture Definition

• Architecture Evaluation

• Component Development

• COTS Utilization

• Mining Existing Assets

• Requirements Engineering

• Software System Integration

• Testing

• Understanding Relevant Domains

All of these practice areas should sound familiar, because all are part of every well-

engineered software system. But all take on special meaning when the software is a

product line, as we will see. How do they relate to each other in a software product line

context? The following figure sketches the story.

Relationships among Software Engineering Practice Areas
1

Domain understanding feeds requirements, which drive an architecture, which specifies

components. Components may be made in-house, bought on the open market, mined

from legacy assets, or commissioned under contract. This choice depends on the

availability of in-house talent and resources, open-market components, an exploitable

legacy base, and able contractors. The existence (or nonexistence) of these things can

affect the requirements and architecture for the product line. Once available, the

components must be integrated, and they and the system must be tested. This is a quick

trip through an iterative growth cycle, and it oversimplifies the story shamelessly but

shows a good approximation of how the software engineering practice areas come into

play.

We begin, fittingly, with architecture definition. Perhaps more than any other core asset,

the architecture will determine how well an organization can field products that are built

efficiently from a shared repository of core assets.

1. Items in brackets ([]) refer to practice areas other than those in the software engineering category.

Architecture Definition

This practice area describes the activities that must be performed to define a software

architecture. By software architecture, we mean the following:

The software architecture of a program or computing system is the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them. "Externally visible"

properties, we are referring to those assumptions other elements can make of an element,

such as its provided services, performance characteristics, fault handling, shared

resource usage, and so on [Bass 03].

By making "externally visible properties" of elements
1
 part of the definition, we

intentionally and explicitly include elements' interfaces and behaviors as part of the

architecture. We will return to this point later. By contrast, design decisions or

implementation choices that do not have system-wide ramifications or visibility are not

architectural.

Architecture is key to the success of any software project, not just a software product

line. Architecture is the first design artifact that begins to place requirements into a

solution space. Quality attributes of a system (such as performance, modifiability, and

availability) are in large part permitted or precluded by its architecture—if the

architecture is not suitable from the beginning for these qualities, don't expect to achieve

them by some miracle later. The architecture determines the structure and management of

the development project as well as the resulting system, since teams are formed and

resources allocated around architectural elements. For anyone seeking to learn how the

system works, the architecture is the place where understanding begins. The right

architecture is absolutely essential for smooth sailing. The wrong one is a recipe for

disaster.

Architectural requirements: For an architecture to be successful, its constraints must be

known and articulated. And contrary to standard software engineering waterfall models,

an architecture's constraints go far beyond implementing the required behavior of the

system that is specified in a requirements document [Clements 01a, p. 57]. Other

architectural drivers that a seasoned architect knows to take into account include:

• the quality attributes (as mentioned above) that are required for each product that

will be built from the architecture

• whether or not the system will have to interact with other systems

• the business goals that the developing organization has for the system. These

might include ambitions to use the architecture as the basis for other systems (or

even other software product lines). Or perhaps the organization wishes to develop

a particular competence in an area such as Web-based database access.

Consequently, the architecture will be strongly influenced by that desire.

• best sources for components. A software architecture will, when it is completed,

call for a set of components to be defined, implemented, and integrated. Those

components may be implemented in-house (see the "Component Development"

practice area), purchased from the commercial marketplace (see the "COTS

Utilization" practice area), contracted to third-party developers (see the

"Developing an Acquisition Strategy" practice area), or excavated from the

organization's own legacy vaults (see the "Mining Existing Assets" practice area).

The architecture is indifferent as to the source. However, the availability of

preexisting components (commercial, third-party, or legacy) may influence the

architecture considerably and cause the architect to carve out a place in the

architecture for a preexisting component to fit, if doing so will save time or

money or play into the organization's long-term strategies.

Component interfaces: As we said in the opening of this section, architecture includes

the interfaces of its components. It is therefore incumbent on the architect to specify

those interfaces (or, if the component is developed externally, ensure that its interface is

adequately specified by others). By "interface" we mean something far more complete

than the simple functional signatures one finds in header files. Signatures simply name

the programs and specify the numbers and types of their parameters, but they tell nothing

about the semantics of the operations, the resources consumed, the exceptions raised, or

the externally visible behavior. As Parnas wrote in 1971, an interface consists of the set

of assumptions that users of the component may safely make about it—nothing more, but

nothing less [Parnas 72]. Approaches for specifying component interfaces are discussed

in "Specific Practices."

Connecting components: Applications are constructed by connecting together

components to enable communication and coordination. In simple systems that run on a

single processor, the venerable procedure call is the oldest and most widely used

mechanism for component interaction. In modern distributed systems, however,

something more sophisticated is desirable. There are several competing technologies,

discussed below, for providing these connections as well as other infrastructure services.

Among the services provided by the infrastructures are remote procedure calls (allowing

components to be deployed on different processors transparently), communication

protocols, object persistence and the creation of standard methods, and "naming services"

that allow one component to find another via the component's registered name. These

infrastructures are purchased as commercial packages; they are components themselves

that facilitate connection among other components. These infrastructure packages are

called middleware and, like patterns, represent another class of already solved problems

(highly functional component interactions for distributed object-based systems) that the

architect need not reinvent. At the time of this writing, the leading contenders in the race

for middleware market dominance are the Object Management Group's CORBA [OMG

96]; Sun Microsystems' Java 2 Enterprise Edition (J2EE), including Enterprise Java

Beans (EJB); and Microsoft's .NET.

Architecture documentation and views: Documenting the architecture is essential for it

to achieve its effectiveness. Here, architectural views come into play. A view a

representation of a set of system elements and the relationships among them [Clements

02a]. A view can be thought of as a projection of the architecture that includes certain

kinds of information and suppresses other kinds. For example, a module decomposition

view will show how the software for the system is hierarchically decomposed into

smaller units of implementation. A communicating processes view will show the

processes in the software and how they communicate or synchronize with each other, but

it will not show how the software is divided into layers (if indeed it is). The layered view

will show this, but will not show the processes. A deployment view shows how software

is assigned to hardware elements in the system. There are many views of an architecture;

choosing which ones to document is a matter of what information you wish to convey.

Each view has a particular usefulness to one or more segments of the stakeholder

community [IEEE 2000] and should be chosen and engineered with that in mind.

Aspects Peculiar to Product Lines

All architectures are abstractions that admit a plurality of instances; a great source of their

conceptual value is, after all, the fact that they allow us to concentrate on design while

admitting a number of implementations. But a product line architecture goes beyond this

simple dichotomy between design and code; it is concerned identifying and providing

mechanisms to achieve a set of explicitly allowed variations (because when exercised,

these become products), whereas with a conventional architecture almost any instance

will do as long as the (single) system's behavioral and quality goals are met. But products

in a software product line exist simultaneously and may vary from each other in terms of

their behavior, quality attributes, platform, network, physical configuration, middleware,

scale factors, and a multitude of other ways.

In a conventional architecture, the mechanism for achieving different instances almost

always comes down to modifying the code. But in a software product line, support for

variation can take many forms (and be exercised at many times [Clements 01a, p. 64]).

Mechanisms to achieve variation are discussed under "Specific Practices."

Integration may assume a greater role for software product lines than for one-off systems

simply because of the number of times it's performed. A product line with a large number

of products and upgrades requires a smooth and easy process for each product. Therefore,

it pays to select a variation mechanism that allows for reliable and efficient integration

when new products are turned out. This means some degree of automation. For example,

if the variation mechanism chosen for the architecture is component selection and

deselection, you will want an integration tool that carries out your wishes by selecting the

right components and feeding them to the compiler or code generator. If the variation

mechanism is parameterization or conditional compilation, you will want an integration

tool that checks the parameter values for consistency and compatibility, then feeds those

values to the compilation step. Hence, the variation mechanism chosen for the

architecture will go hand-in-hand with the integration approach (see the "Software

System Integration" practice area).

For many other system qualities, such as performance, availability, functionality,

usability, and testability, there are no major peculiarities that distinguish architecture for

product lines relative to one-of-a-kind systems.

There must be documentation for the product line architecture as it resides in the core

asset base and for each product's architecture (to the extent that it varies from the product

line architecture). For a software product line, the views will need to show the variations

that are possible. A second documentation obligation is to describe the architecture's

attached process-that is, the part of the production plan that deals with the architecture. It

should describe the architecture's variation points, how to exercise them, and a rationale

for the variation. In practice, the attached process for the architecture is often bundled

with the attached processes for requirements engineering, component development,

software integration, and testing into an operational document that serves as a product

builder's guide, discussed in more detail under "Specific Practices."

Application to Core Asset Development

The product line architecture is an early and prominent member in the collection of core

assets. The architecture is expected to persist over the life of the product line and to

change relatively little and relatively slowly over time. The architecture defines the set of

software components (and hence their supporting assets such as documentation and test

artifacts) that populate the core asset base. The architecture also spawns its attached

process, which is itself an important core asset for sustaining the product line.

Application to Product Development

Once it has been placed in the product line core asset base, the architecture is used to

create instance architectures for each new product according to its attached process. If

product builders discover a variation point or a needed mode of variation that is not

permitted by the architecture, it should be brought to the architect's attention; if the

variation is within scope (or deemed desirable to add to the scope), the architecture may

be enhanced to accommodate it. The "Operations" practice area deals with setting up this

feedback loop in the organization.

Specific Practices

Architecture definition and architecture-based development: As the field of software

architecture has grown and matured, methods of creating, defining, and using architecture

have proliferated. Many specific practices related to architecture definition are defined in

widely available works [Kruchten 98, Jacobson 97, Hofmeister 00, Bachmann 00]. The

Rational Unified Process (RUP) is the most widely used method for object-oriented

systems. An explanation of RUP is beyond the scope of this framework, but a plethora of

resources is available elsewhere; for example, at

www.rational.com/products/rup/index.jsp.

Attribute-Driven Design (ADD): The SEI's Attribute-Driven Design (ADD) method

[SEI ADD] is a method for designing the software architecture of a product line to ensure

that the resulting products have the desired qualities. ADD is a recursive decomposition

method that starts by gathering architectural drivers that are a combination of the quality,

functional, and business requirements that "shape" the architecture.. The steps at each

stage of the decomposition are:

1. Choose architectural drivers. The architectural drivers are the combination of
quality, business, and functional goals that "shape" the architecture.

2. Choose patterns and children component types to satisfy drivers. There are known
patterns to achieve various qualities. Choose the solutions that are most

appropriate for the high priority qualities.

3. Instantiate children design elements and allocate functionality from use cases
using multiple views. The functionality to be achieved by the product family is

allocated to the component types.

4. Identify commonalities across component instances. These commonalities are
what define the product line, as opposed to individual products.

5. Validate that quality and functional requirements and any constraints have not
been precluded from being satisfied by the decomposition.

6. Refine use cases and quality scenarios as constraints to children design elements.
Because ADD is a decomposition method, the inputs for the next stage of

decomposition must be prepared.

Architectural patterns: Architectures are seldom built from scratch but rather evolve

from solutions previously applied to similar problems. Architectural patterns represent a

current approach to reusing architectural design solutions. An architectural pattern
2
 is a

description of component types and a pattern of their runtime control and/or data transfer

[Shaw 96]. Architectural patterns are becoming a de facto design language for software

architectures. People speak of pipe-and-filter, n-tier, client-server style, or an agent-based

architectures, and these phrases immediately convey complex and sophisticated design

information. Architectural pattern catalogues exist that explain the properties of a

particular pattern, including how well-suited each one is for achieving specific quality

attributes such as security or high performance. Using a previously catalogued pattern

shortens the architecture definition process, because patterns come with pedigrees: what

applications they work well for, what their performance properties are, where they can

easily accommodate variation points, and so forth. For example, the layered architectural

pattern is well known for imbuing a system with portability, the ability to move the

software to a new operating environment with minimal change. Portability is a desirable

characteristic for a product line architecture if different products are expected to run on

different platforms, or if the entire product line may migrate to a new platform one day.

Thus, a product line architect designing for portability may start out by considering a

layered architecture. Product line architects should be familiar with well-known

architectural patterns as well as patterns (well known or not) used in systems similar to

the ones they are building.

Quality Attribute Workshops: Prerequisite to designing an architecture is

understanding the behavioral and quality attribute requirements that it must satisfy. One

way to elicit these requirements from the architecture's stakeholders is with a Quality

Attribute Workshop (QAW) [SEI QAW]. QAWs provide a method for identifying a

system's architecture critical quality attributes, such as availability, performance, security,

interoperability, and modifiability. In the QAW, an external team facilitates meetings

between stakeholders during which scenarios representing the quality attribute

requirements are generated, prioritized, and refined (i.e., adding additional details such as

the participants and assets involved, the sequence of activities, and questions about

quality attributes requirements). The refined scenarios can be used in different ways, for

example as seed scenarios for an evaluation exercise or as test cases in an acquisition

effort.

Aspect-oriented programming (AOP): AOP is an approach to program development

that makes it possible to modularize systemic properties of a program such as

synchronization, error handling, security, persistence, resource sharing, distribution,

memory management, replication, and the like. Rather than staying well localized within

a class, these concerns tend to crosscut the system's class and module structure. An

"aspect" is a special kind of module that implements one of these specific properties of a

program. As that property varies, the effects "ripple" through the entire program

automatically. Like object-oriented programming, AOP works by allowing the

programmer to cleanly express certain structural properties of the program, and then take

advantage of that structure in powerful ways. In object-oriented programming, the

structure is rooted in notions of hierarchies, inheritance, and specialization. In AOP, the

structure is rooted in notions of crosscutting. As an example, an AOP program might

define "the public methods of a given package" as a crosscutting structure, and then say

that all of those methods should do a certain kind of error handling. This would be coded

in a few lines of well-modularized code. AOP is an architectural approach because it

provides a means of separating concerns that would otherwise affect a multitude of

components that were constructed to separate a different, orthogonal set of concerns. The

AOP work at Xerox PARC is described on its Web page [Xerox 99].

Product builder's guide: A product line architecture is instantiated as a product

architecture each time a product is turned out. The product architecture may be the same

as the product line architecture, or it may be the result of preplanned tailoring or binding.

For example, install four servers, 52 client workstations, and two databases; configure the

network routers accordingly; use the high-speed low-resolution version of the graphics

component, and turn encryption in the message generator off. The steps that product

developers must take to create this product architecture constitute its attached process and

should of course be documented as such. However, many organizations collect the

attached processes for requirements engineering, architecture definition, component

development, software integration, and testing into a single document that forms a

specialized subset of the overall production plan. One organization we have worked with

adopted the following organization for their product builder's guide:

• Introduction: goals and purpose of the document; intended audience; basic

common assumptions; applicable development standards

• Sources of other information: references to documents containing the product

line architecture definition (which is maintained separately from the product

builder's guide because its stakeholders include more than product builders) and

associated information such as terms and terminology, the architecture's goals,

architecture training materials, development standards, and configuration

management procedures and policies

• Basic concepts: What is a variation point? What mechanisms for realizing

variation points have been used in this architecture? What is the relation between

the product line architecture and the architecture for a particular product? What is

an architecture layer, and how is the concept used? What is a service (in this case,

the basic unit of reuse provided by the architecture)? And so forth.

• Service component catalogue: This organization's product line architecture

contains some preintegrated units of functionality called service components that

product builders can use to construct products. This section catalogues those

service components, defines their interfaces, and explains how service

components related to each other.

• Building an application: This section gives code templates and examples for

building applications. It progresses incrementally. First, how do you build the

most trivial application possible, one that perhaps does nothing but start a process

running? Then, how do you build the most trivial application that actually does

something observable, the domain's equivalent of the ubiquitous "Hello, world!"

program that was the first computer program many of us ever wrote? Then, how

do you build an application that contains the functions common to many of the

products in the product line? Then, how do you build an application that runs on a

single processor? Distributed across multiple processors? And so forth. The

examples show how to instantiate the architecture's variation points at each step

along the way.

• Performance engineering: This section presented guidelines on how to build a

product when performance was a concern.

Mechanisms for achieving variability in a product line architecture (1): Mikael

Svahnberg and Jan Bosch have crisply staked out the landscape of architecture-based

support for variability in product lines [Svahnberg 00]. Their list includes the following

mechanisms:

• Inheritance: in object-oriented systems, used when a method needs to be

implemented differently (or perhaps extended) for each product in the product

line

• Extensions and extension points: used when parts of a component can be

augmented with additional behavior or functionality

• Parameterization: used when a component's behavior can be characterized

abstractly by a placeholder that is then defined at build time. Macros and

templates are forms of parameterization.

• Configuration and module interconnection languages: used to define the

build-time structure of a system, including selecting (or deselecting) whole

components

• Generation: used when there is a higher-level language that can be used to define

a component's desired properties

• Compile-time selection of different implementations: The variable #ifdefs can

be used when variability in a component can be realized by choosing different

implementations.

Code-based mechanisms used to achieve variability within individual components

will be discussed further in the "Component Development" practice area.

Mechanisms for achieving variability in a product line architecture (2): Philips

Research Laboratories uses service component frameworks to achieve diversity in their

product line of medical imaging systems [Wijnstra 00]. Goals for that family include

extensibility over time and support for different functions at the same time. A framework

is a skeleton of an application that can be customized to yield a product. White-box

frameworks rely heavily on inheritance and dynamic binding; knowledge of the

framework's internals is necessary in order to use it. Black-box frameworks define

interfaces for components that can be plugged in via composition tools. A service

component framework is a type of black-box framework, supporting a variable number of

plug-in components. Each plug-in is a container for one or more services, which provide

the necessary functionality. All services support the framework's defined interface but

exhibit different behaviors. Clients use the functionality provided by the component

framework and the services as a whole; the assemblage is itself a component in the

products' architecture. Conversely, units in the product line architecture may consist of or

contain one or more component frameworks.

Planning for architectural variation: Nokia has used a "requirements definition hierarchy"

as a way to understand what variations are important to particular products [Kuusela 00].

The hierarchy consists of design objectives (goals or wishes) and design decisions

(solutions adopted to meet the corresponding goals). For example, a design objective

might be "System shall be highly reliable." One way to meet that objective is to decree

that the "System shall be a duplicated system." This in turn might mean that the "System

shall have duplicated hardware" and/or the "System duplicates communication links."

Another way to meet the reliability objective is to decree that the "System shall have self-

diagnostic capacity," which can be met in several ways. Each box in the hierarchy is

tagged with a vector, each element of which corresponds to a product in the product line.

The value of an element is the priority or importance given to that objective, or

endorsement of that design decision, by the particular product. For example, if an overall

goal for a product line is high reliability, being a duplicated system might be very

important to Product 2 and Product 3, but not at all important to Product 1, which will be

a single-chip system.

The requirements definition hierarchy is a tool that the architect can use as a bridge

between the product line's scope (see the "Scoping" practice area), which will tell what

variations the architecture will have to support, and the architecture, which may support

the variation in a number of ways. It is also useful to see how widely used a new feature

or variation will be: should it be incorporated into the architecture for many products to

use, or is it a one-of-a-kind requirement best left to the devices of the product that

spawned it? The hierarchy is a way for the architect to capture the rationale behind such

decisions.

Architecture documentation: Recently more attention has been paid in the software

engineering community about how to write down a software architecture so that others

can understand it, use it to build systems, and sustain it. The Rational's Unified Modeling

Language (UML) is the most-often used formal notation for software architectures,

although it lacks many architecture-centric concepts. The Software Engineering Institute

recently published the "views and beyond" approach to documentation [Clements 02a],

which holds that documenting a software architecture is a matter of choosing the relevant

views based on projected stakeholder needs, documenting those, and then documenting

the information that applies across all of the views. Examples of cross-view information

include how the views relate to each other, and stakeholder-centric roadmaps through the

documentation that let people with different interests find information relevant to them

quickly and efficiently. The approach includes a three-step method for choosing the best

views to engineer and document for any architecture, and the overall approach produces a

result compliant with the IEEE-recommended best practice on documenting architectures

of software-intensive systems [IEEE 2000].

Specifying component interfaces: Interfaces are often specified using a contractual

approach. Contracts state pre- and postconditions for each service and define invariants

that express constraints about the interactions of services within the component. The

contract approach is static and does not address the dynamic aspects of a component-

based system or even the dynamic aspects of a single component's behavior. Additional

techniques such as state machines [Harel 98] and interval temporal logic [Moszkowski

86] can be used to specify constraints on the component that deal with the ordering of

events and the timing between events. For example, a service may create a thread and

assign it work to do that will not be completed within the execution window of the

service. A postcondition for that service would include the logical clause for "eventually

this work is accomplished."

A complete contract should include information about what will be both provided and

required. The typical component interface specification describes the services that a

component provides. To fully document a component so that it can be integrated easily

with other components, the specification should also document the resources that the

component requires. In addition to making it easy to determine what must be available

for the component to be integrated successfully, this documentation provides a basis for

determining whether there are possible conflicts between the resources needed for the set

of components comprising the application.

A component's interface provides only a specification of how individual services respond

when invoked. As components are integrated, additional information is needed. The

interactions between two components needed to achieve a specific objective can be

described as a protocol. A protocol groups together a set of messages from both

components and specifies the order in which they are to occur.

Each component exhibits a number of externally visible attributes that are important to its

use but are often omitted (incorrectly) from its interface specification. Performance

(throughput) and reliability are two such attributes. The standard technique for

documenting the performance of a component is the computational complexity of the

dominant algorithms. Although this technique is platform-independent, it is difficult to

use in reasoning about satisfying requirements in real-time systems, because it fails to

yield an actual time measure. Worse, it uses information that will change when

algorithms (presumably encapsulated within the component) change. A better approach is

to document performance bounds, setting an upper bound on time consumed. The

documentation remains true when the software is ported to a platform at least as fast as

the current one-a safe assumption in today's environment. Cases in which the stated

bounds are not fast enough can be resolved on a case-by-case basis. If the product can in

fact meet the more stringent requirement on that product's platform, that fact can be

revealed. If it cannot, either remedial action must be taken or the requirement must be

relaxed.

Practice Risks

The biggest risk associated with this practice area is failing to have a suitable product line

architecture. This will result in:

• components that do not fit together or interact properly

• products that do not meet their behavioral, performance, or other quality goals

• products that should be in scope, but which are unable to be produced from the

core assets at hand

• a tedious and ad hoc product-building process

These in turn will lead to extensive and time-consuming rework, poor system quality, and

inability to realize the product line's full benefits. If product teams do not find the

architecture to be suitable for their products and easy to understand and use, they may

bypass it, resulting in the eventual degradation of the entire product line concept.

Unsuitable architectures could result from:

• Lack of a skilled architect: A product line architect must be skilled in current

and promising technologies, the nuances of the application domains at hand,

modern design techniques and tool support, and professional practices such as the

use of architectural patterns. The architect must know all of the sources of

requirements and constraints on the architecture, including those (such as

organizational goals) not traditionally specified in a requirements specification

[Clements 01a, p. 58].

• Lack of sound input: The product line scope and production strategy must be

well defined and stable. The requirements for products must be articulated clearly

and completely enough so that architectural decisions may be reliably based on

them. Forthcoming technology, which the architecture must be poised to accept,

must be forecast accurately. Relevant domains must be understood so that their

architectural lessons are learned. To the extent to which the architect is compelled

to make guesses, the architecture poses a risk.

• Poor communication: The best architecture is useless if it is documented and

communicated in ways that its consumers-the product builders-cannot understand.

An architecture whose documentation is chronically out of date is effectively the

same as an undocumented architecture. There must be clear and open two-way

communication channels between the architect and the organizations using the

architecture.

• Lack of supportive management and culture: There must be management

support for the creation and use of the product line architecture, especially if the

architecture group is separate from the product development group. Failing this,

product groups may "go renegade" and make unilateral changes to the

architecture, or decline to use it at all, when turning out their systems. There are

additional risks if management does not support the strong integration of system

and software engineering.

• Architecture in a vacuum: The exploration and definition of software

architecture cannot take place in a vacuum separate from system architecture.

• Poor tools: There are precious few tools for this practice area, especially those

that help with designing, specifying, or exercising an architecture's variability

mechanisms–a fundamental part of a product line architecture. Tools to test the

compliance of products to an architecture are virtually nonexistent.

• Poor timing: Declaring an architecture ready for production too early leads to

stagnation, while declaring it too late may allow unwanted variation. Discretion is

needed when deciding when and how firmly to freeze the architecture. The time

required to fully develop the architecture also may be too long. If product

development is curtailed while the product line architecture is being completed,

developers may lose patience, management may lose resolve, and salespeople

may lose market share.

Unsuitable architectures are characterized by:

• Inappropriate parameterization: Overparameterization can make a system

unwieldy and difficult to understand. Underparameterization can eliminate some

of the necessary customizations of the system. The early binding of parameters

can also preclude easy customization, while the late binding of parameters can

lead to inefficiencies.

• Inadequate specifications: Components may not integrate properly if their

specifications are sketchy or limited to static descriptions of individual services.

• Decomposition flaws: A component may not provide the functionality needed to

implement the system correctly if there is not an appropriate decomposition of the

required system functionality.

• Wrong level of specificity: A component may not be reusable if the component

is too specific or too general. If the component is made so general that it

encompasses multiple domain concepts, the component may require complex

configuration information to make it fit a specific situation and therefore be

inherently difficult to reuse. The excessive generality may also tax performance

and other quality attributes to an unacceptable point. If the component is too

specific, there will be few situations in which it is the correct choice.

• Excessive intercomponent dependencies: A component may become less

reusable if it has excessive dependencies on other components.

Further Reading

General software architecture:

[Bass 03] emphasizes architecture's role in system development and provides several case

studies of architectures used to solve real problems. One is an architecture for the

CelsiusTech ship systems product line. It also includes an extensive discussion of

architectural views.

[Shaw 96] provides an excellent treatment of architectural patterns (called styles there)

and their ramifications for system building.

[Hofmeister 00] emphasizes views and structures, and provides a solid treatment of

building a system from an architecture and its views.

[SEI ATA] provides a wide variety of software architecture resources and links.

Product line architecture:

[Bosch 00a] brings a dedicated product line focus to the mix, and is required reading for

the product line practitioner.

Software architecture from a strictly object-oriented point of view:

[Booch 94] offers a good foundation.

[Jacobson 97] devotes an entire section to architectural patterns for object-oriented

systems designed with strategic reuse in mind.

[Kruchten 98] is a good reference for the preeminent development process in the object-

oriented realm.

[Buschmann 96] raises the design pattern phenomenon to the arena of software

architecture and is a good staple of any architect's toolbox.

[Smith 01] contains three chapters of principles and guidance for architecting systems

(object-oriented or not) in which performance is a concern.

Problem solving:

[Jackson 00] classifies, analyzes, and structures a set of recurring software development

problems, organized according to how the software will interact with the outside world.

Architecture Documentation:

[Clements 02a] explains the views-and-beyond approach to architecture documentation.

UML:

(http://www.rational.com/uml) is the starting point.

1. An element is a unit of software that has identity at either implementation time or runtime. We use the term component to refer to a unit of

software that serves as a core asset in the product line and that must be developed or acquired as a unit.

2. The term used in [Shaw 96] was architectural style, which is synonymous with architectural pattern.

Architecture Evaluation

"Marry your architecture in haste and you can repent in leisure." So admonished Barry

Boehm in a recent lecture [Boehm 00]. The architecture of a system represents a coherent

set of the earliest design decisions, which are the most difficult to change and the most

critical to get right. It is the first design artifact that addresses the quality goals of the

system such as security, reliability, usability, modifiability, and real-time performance.

The architecture describes the system structure and serves as a common communication

vehicle among the system stakeholders: developers, managers, maintainers, users,

customers, testers, marketers, and anyone else who has a vested interest in the

development or use of the system.

With the advent of repeatable, cost-effective architecture evaluation methods, it is now

feasible to make architecture evaluation a standard part of the development cycle. And

because so much rides on the architecture, and because it is available early in the life

cycle, it makes utmost sense to evaluate the architecture early when there is still time for

midcourse correction. In any nontrivial project, there are competing requirements and

architectural decisions that must be made to resolve them. It is best to air and evaluate

those decisions and to document the basis for making them before the decisions are cast

into code.

Architecture evaluation is a form of artifact validation, just as software testing is a form

of code validation. In the "Testing" practice area, we will discuss validation of artifacts in

general—and in fact, prescribe a validation step for all of the product line's core assets—

but the architecture for the product line is so foundational that we give its validation its

own special practice area.

The evaluation can be done at a variety of stages during the design process. For example,

the evaluation can occur when the architecture is still on the drawing board and candidate

structures are being weighed. The evaluation can also be done later, after preliminary

architectural decisions have been made, but before detailed design has begun. The

evaluation can even be done after the entire system has been built (such as in the case of a

reengineering or mining operation). The outputs will depend on the stage at which the

evaluation is performed. Enough design decisions must have been made so that the

achievement of the requirements and quality-attribute goals can be analyzed. The more

architectural decisions that have been made, the more precise the evaluation can be. On

the other hand, the more decisions that have been made, the more difficult it is to change

them.

An organization's business goals for a system lead to particular behavioral requirements

and quality-attribute goals. The architecture is evaluated with respect to those

requirements and goals. Therefore, before an evaluation can proceed, the behavioral and

quality-attribute goals against which an architecture is to be evaluated must be made

explicit. These quality-attribute goals support the business goals. For example, if a

business goal is that the system should be long-lived, modifiability becomes an important

quality-attribute goal.

Quality-attribute goals, by themselves, are not definitive enough either for design or for

evaluation. They must be made more concrete. Using modifiability as an example, if a

product line can be adapted easily to have different user interfaces, but is dependent on a

particular operating system, is it modifiable? The answer is yes with respect to the user

interface, but no with respect to porting to a new operating system. Whether this

architecture is suitably modifiable or not depends on what modifications to the product

line are expected over its lifetime. That is, the abstract quality goal of modifiability must

be made concrete: modifiable with respect to what kinds of changes, exactly? The same

is true for other attributes. The evaluation method that you use must include a way to

concretize the quality and behavioral goals for the architecture being evaluated.

Aspects Peculiar to Product Lines

In a product line, architecture assumes a dual role. There is the architecture for the

product line as a whole, and there are architectures for each of the products. The latter are

produced from the former by exercising the built-in variation mechanisms to achieve

instances. Both should be evaluated. The product line architecture should be evaluated for

its robustness and generality, to make sure it can serve as the basis for products in the

product line's envisioned scope. Instance architectures should be evaluated to make sure

they meet the specific behavioral and quality requirements of the product at hand. In

practice, the extent to which these two evaluations are separate exercises depends on the

extent to which the product architecture differs from the product line architecture.

Evaluating both the product line and product architectures is a prudent, low-cost, risk-

reduction method.

Some of the business goals will be related to the fact that the architecture is for a product

line. For example, the architecture will almost certainly have built-in variation points that

can be exercised to derive specific products having different attributes. The evaluation

will have to focus on the variation points to make sure they are appropriate, offer

sufficient flexibility to cover the product line's intended scope, can be exercised in a way

that lets products be built quickly, and do not impose unacceptable runtime performance

costs. Also, different products in the product line may have different quality-attribute

requirements, and the architecture will have to be evaluated for its ability to provide all

required combinations.

Often, some of the hardware and other performance-affecting factors for a product line

architecture are unknown to begin with. Thus, the evaluation of the product line

architecture must establish bounds on the performance that the architecture is able to

achieve, assuming bounds on hardware and other variables. Use the evaluation to identify

potential contention problems and to put in place the policies and strategies to resolve

contention. The evaluation of a particular instance of the product line architecture can

verify whether the hardware and performance decisions that have been made are

compatible with the goals of that instance.

Application to Core Asset Development

Clearly, an evaluation should be applied to the core asset that is the product line

architecture. As the requirements, business goals, and architecture all evolve over time,

there should be periodic (although not frequent) mini-evaluations that discover whether

the architecture and business goals are still well matched. Some evaluation methods

produce a report that summarizes what the articulated, prioritized quality-attribute goals

are for the architecture, and how the architecture satisfies them. Such a report makes an

excellent rationale record, which can then accompany the architecture throughout its

evolution as a core asset in its own right.

An architecture evaluation can also be performed on components that are candidates to be

acquired as core assets, as well as on components developed in-house. In either case, the

evaluation proceeds with technical personnel from the organization that developed the

potential acquisition. An architecture evaluation is not possible for "black-box"

architecture acquisitions where the architecture is not visible. The quality-attribute goals

to be used for the evaluation will include how well the potential acquisition will (1)

support the quality goals for the product line and (2) evolve over time to support the

intended evolution of the products in the product line.

Application to Product Development

An architecture evaluation should be performed on an instance or variation of the

architecture that will be used to build one or more of the products in the product line. The

extent to which this is a separate, dedicated evaluation depends on the extent to which the

product architecture differs in quality-attribute-affecting ways from the product line

architecture. If it doesn't, then these product architecture evaluations can be abbreviated,

since many of the issues that would normally be raised in a single product evaluation will

have been dealt with in the evaluation of the product line architecture. In fact, just as the

product architecture is a variation of the product line architecture, the product

architecture evaluation is a variation of the product line architecture evaluation.

Therefore, depending on the architecture evaluation method used, the evaluation artifacts

(scenarios, checklists, and so on) will certainly have reuse potential, and you should

create them with that in mind. Document a short attached process for the architecture

evaluation of the product line or product architectures. This process description would

include the method used, what artifacts can be reused, and what issues to focus on. The

results of architecture evaluation for product architectures often provide useful feedback

to the architect(s) of the product line architecture and fuel improvements in the product

line architecture.

Finally, when a new product is proposed that falls outside the scope of the original

product line (for which the architecture was presumably evaluated), the product line

architecture can be reevaluated to see if it will suffice for this new product. If it will, the

product line's scope is expanded to include the new product. If it will not, the evaluation

can be used to determine how the architecture would have to be modified to

accommodate the new product.

Specific Practices

Several different architecture evaluation techniques exist and can be modified to serve in

a product line context. Techniques can be categorized broadly as either questioning

techniques (those using questionnaires, checklists, scenarios, and the like as the basis for

architectural investigation) or measuring techniques (such as simulation or

experimentation with a running system) [Abowd 96]. A well-versed architect should have

a spectrum of techniques in his or her evaluation kit. For full-fledged architectures,

software performance engineering or a method such as the ATAM
SM
 or the SAAM is

indispensable. For less fully worked out designs, a technique such as Active Reviews for

Intermediate Designs (ARID) is handy. For validating architectural (and other design)

specifications, active design reviews (ADRs) are helpful. A bibliography of software

architecture analysis, available from the journal Software Engineering Notes [Zhao 99],

provides more alternatives.

ATAM
SM
: The Architecture Tradeoff Analysis Method

SM
 (ATAM) is a scenario-based

architecture evaluation method that focuses on a system's quality goals. The input to the

ATAM consists of an architecture, the business goals of a system or product line, and the

perspectives of stakeholders involved with that system or product line. The ATAM

achieves its evaluation of an architecture by utilizing an understanding of the

architectural approach that is used to achieve particular quality goals and the implications

of that approach. The ATAM utilizes stakeholder perspectives to derive a collection of

scenarios giving specific instances for usage, performance requirements, various types of

failures, possible threats, and a set of likely modifications. The scenarios are used for the

evaluators to understand the inherent architectural risks, sensitivity points to particular

quality attributes, and tradeoffs among quality attributes. Of particular interest to ATAM-

based evaluations of product line architectures are the sensitivity points to extensibility

(or variation) and the tradeoffs of extensibility with other quality-attribute goals (usually

real-time performance, security, and reliability).

The output of an ATAM evaluation includes:

• the collection of scenarios that represent the stakeholders' highest-priority

expression of usage and quality-attribute goals for the system and its architecture

• a utility tree that assigns specific scenarios to a location in the "space" of quality

attributes that apply to the system(s) whose architecture is being evaluated

• specific analysis results, including the explicit identification of sensitivity points,

tradeoffs, and other architectural decisions that impact desired quality attributes

either positively or problematically. The latter constitute areas of risk.

The ATAM can be used to evaluate both product line and product architectures at various

stages of development (conceptual, before code, during development, or after

deployment). An ATAM evaluation usually requires three full days plus some

preparation and preliminary investigation time. The ATAM is described fully by

Clements et al. [Clements 01b] and on the World Wide Web [SEI ATA].

SPE: Software performance engineering (SPE) is a method for making sure that a design

will allow a system to meet its performance goals before it has been built. SPE involves

articulating the specific performance goals, building coarse-grained models to get early

ideas about whether the design is problematic, and refining those models along well-

defined lines as more information becomes available. Conceptually, SPE resembles the

ATAM, in which the singular quality of interest is performance. Connie Smith has

written both the definitive resource for SPE and its concise method description [Smith 90,

Smith 99].

ARID: Active Reviews for Intermediate Designs (ARID) [Clements 00] is a hybrid

design review method that combines the active design review philosophy of ADRs with

the scenario-based analysis of the ATAM and SAAM. ARID was created to evaluate

partial (subsystem, for example) designs in their early or conceptual phases, before they

are fully documented. While such designs are architectural in nature, they are not

complete architectures. ARID works by assembling stakeholders for the design, having

them adopt a set of scenarios that express a set of meaningful ways they would want to

use the design, and then having them write code or pseudocode that uses the design to

carry out each scenario. This will wring out any conceptual flaws early, plus give

stakeholders an early familiarity with the design until it is completely documented. An

ARID exercise takes from one to two days.

Active design reviews: An Active Design Review (ADR) [Parnas 85] is a technique that

can be used to evaluate an architecture still under construction. ADRs are particularly

well-suited for evaluating the designs of single components or small groups of

components before the entire architecture has been solidified. The principle behind ADRs

is that stakeholders are engaged to review the documentation that describes the interface

facilities provided by a component, but the stakeholders are asked to complete exercises

that compel them to actually use the documentation. For example, each reviewer may be

asked to write a short code segment that performs some useful task using the component's

interface facilities, or each reviewer may be asked to verify that essential information

about each interface operation is present and well-specified. ADRs are contrasted with

unstructured reviews in which people are asked to read a document, attend a long

meeting, and comment on whatever they wish. In an ADR, there is no meeting; reviewers

are debriefed (or walked through their assignments) individually or in small informal

groups. The key is to avoid asking questions to which a reviewer can blithely and without

much thought answer "yes" or "no." An ADR for a medium-sized component usually

takes a full day from each of about a half dozen reviewers who can work in parallel. The

debriefing takes about an hour for each session.

Practice Risks

The major risk associated with this practice is failing to perform an effective architecture

evaluation that will prevent unsuitable architectures from being allowed to pollute a

software product line effort. Architecture evaluation is the safety valve for product line

architectures, and an ineffective evaluation will lead to the same consequences as an

unsuitable architecture, which were listed in the "Architecture Definition" practice area.

An ineffective evaluation can result from the following:

• Wrong people involved in the evaluation: If the architect is not involved in the

evaluation, it is unlikely that enough information will be uncovered to make the

evaluation worthwhile. Similarly, if the architecture's stakeholders are not

involved, the comprehensive goals and requirements for the architecture (against

which it must be evaluated) will not emerge.

• Wrong time in the life cycle: If the review is too early, not enough decisions

have been made, so there isn't anything to evaluate. If the review is too late, little

can be changed as a result of the evaluation.

• No time for evaluation: If time is not planned for the evaluation, the people who

need to be involved will not be able to give it their attention, the evaluation will

not be conducted effectively, and the results will be superficial at best.

• Wrong interpretation of evaluation: The results of any architecture evaluation

should not be seen as a complete enumeration of all of the risks in the

development. Process deficiencies, resource inadequacies, personnel issues, and

downstream implementation problems are all risks unlikely to be exposed by an

architecture evaluation.

• Failure to reevaluate: As the architecture inevitably evolves, or the criteria for

its suitability inevitably evolve, it should be reevaluated (perhaps using a

lightweight version of the original evaluation) periodically to give the

organization confidence that they are on the right track.

Further Reading

[Clements 01b] is a primer on software architecture evaluation, containing a detailed

process model and practical guidance for applying the ATAM and comparing it with

other evaluation methods. Other methods, including ARID, are also covered.

[Parnas 85] is the original description by Parnas and Weiss of ADRs and remains the

most comprehensive source of information on this approach.

[SEI ATA], the home page for the Software Engineering Institute's Software Architecture

Technology (formerly known as the Architecture Tradeoff Analysis) Initiative, contains

publications about the ATAM and the SAAM, as well as other software architecture

topics.

[Smith 90] remains the definitive treatment of performance engineering.

[Smith 01] is a good accompaniment, but not a substitute, for [Smith 90].

[Zhao 99] has compiled a bibliography on software architecture analysis. His Web site,

where the list is kept up to date, is cited on the SEI's ATA page.

Component Development

One of the tasks of the software architect is to produce the list of components that will

populate the architecture. This list gives the development, mining, and acquisition teams

their marching orders for supplying the parts that the software system will comprise. The

term "component" is about as generic as the term "object"; definitions for each term

abound. Simply stated, components are the units of software that go together to form

whole systems (products), as dictated by the software architecture for the products.

Szyperski offers a more precise definition that applies well [Szyperski 98]:

A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can be

deployed independently and is subject to composition by third parties.

By component development, we mean the production of components that implement

specific functionality within the context of a software architecture. The functionality is

encapsulated and packaged, then integrated with other components using an

interconnection method.

Software components trace their heritage back to the subroutine, which was the first unit

of software reuse. Programmers discovered they could invoke a previously written

segment of code and have access to its functionality while being blissfully unconcerned

with its implementation, development history, storage management, and so forth. Soon,

very few people ever again had to worry about how to code, say, a numerically stable

double-precision cosine algorithm. Besides saving time, this practice elevated our

thinking: we could think "cosine" and not about storage registers and overflowing

multiplications. It also elevated our languages: sophisticated subroutines were

indistinguishable from primitive, atomic statements in the programming language.

What we now call component-based software development flows in an unbroken line

from these early beginnings. Modern components are much larger, are much more

sophisticated, carry us much higher into domain-specific application realms, and have

more complex interaction mechanisms than subroutine invocation, but the concepts and

the reasons we embrace the concepts remain the same. In the same way that early

subroutines liberated the programmer from thinking about details, component-based

software development shifts the emphasis from programming software to composing

software systems. Implementation has given way to integration as the focus. At its

foundation is the assumption that there is sufficient commonality in many large software

systems to justify developing reusable components to exploit and satisfy that

commonality. Today, we look for components that provide large collections of related

functionality all at once (instead of a cosine routine, think Mathematica) and whose

interconnections with each other are loose and flexible. If we have control over the

decomposition into components and the interfaces of each, then the granularity and

interconnection is determined by our system's software architecture. If the components

are built externally, then their granularity and interfaces are imposed on us, and they

affect our software architecture.

The practice area of component development is concerned with the former case, and how

to build the components so that the instructions given to us in the architecture are carried

out. (One type of instruction carried out by the architecture is what other parts of a

system a component is allowed to use. A layered view of an architecture, for example, is

highly concerned with this. Allowed-to-use information is not part of the component's

interface or of its functionality, but it is nevertheless architectural and must be honored

by the implementation.) Very complex components may have substructure of their own

and be implemented partially by employing smaller components, either built or acquired.

Aspects Peculiar to Product Lines

For the purposes of product lines, components are the units of software that go together to

form whole systems (products), as dictated by the product line architecture for the

products and the product line as a whole. If we appeal to the Szyperski definition of

components given above, "deployed independently" may simply mean installed into a

product line's core asset base where they are made available for use in one or more

products. The "third parties" are the product developers, who compose the component

with others to create systems. The contractually specified interfaces are paramount, as

they are in any software development paradigm with software architecture at its

foundation.

The component development portion of a product line development effort focuses on

providing the operational software that is needed by the products and that is to be

developed in-house. The resultant components either are included in the core asset base

and hence used in multiple products in the product line or are product-specific

components. Components that are included in the core asset base must support the

flexibility needed to satisfy the variation points specified in the product line architecture

and/or the product line requirements. Needed functionality is defined in the context of the

product line architecture. The architecture also defines those places at which variation is

needed.

The singular aspect of component development that is peculiar to product lines is

providing required variability in the developed components via the mechanisms that are

described in the specific practices for this practice area.

Application to Core Asset Development

If a developed component is to be a core component, it must have an attached process

associated with it that explains how any built-in component-level variability can be

exercised in order to produce an instantiated version for a particular product. Developed

components and their related artifacts (interface specifications, attached processes for

instantiating built-in variability, test support, and so on) constitute a major portion of the

product line's core asset base. Hand in hand with the software architecture that mandated

them into existence, the core components form the conceptual basis for building products.

Consequently, component development, as described above, is a large portion of the

activity on the core asset development side of product line operations.

Application to Product Development

If a developed component is not to be part of the core asset base, this suggests that it is

specific to a particular product and therefore probably does not have much variability

built into it. While the development task must obey the architecture as strictly as it must

for core components, noncore development is likely to be simpler. Nevertheless,

developers of noncore components would be wise to look for places where variability

could be installed in the future, should the component in question ever turn out to be

useful in a group of products.

Components for a product are (1) used directly from the core asset base, (2) used directly

after binding the built-in variabilities, (3) used after modification or adaptation, or (4)

developed anew. Since the first two cases are pro forma, we will discuss the last two.

Adapting components: Components that are being used in a context other than the one

for which they were originally developed often do not exactly fit their assigned roles.

There are a couple of techniques for accommodating these differences. The adapter

design pattern [Gamma 95] imposes an intermediary between two components. The

adapter can compensate for mismatches in number or types of parameters within a

service signature, provide synchronization in a multithreaded interaction, and adjust for

many other types of incompatibilities. Scripting languages can often be used to

implement the adapter.

The second technique is to modify the component to fit its new environment. This may be

impossible if the source code is not available. Even if it is possible, it is usually a bad

idea. Cloning an existing component creates a new asset that must be managed and

creates a dependency that cannot be expressed explicitly. It can vary independently of its

parent component, making maintenance of both pieces a difficult task. Object-oriented

notations provide a semantic device to express this type of relationship by defining the

dependent class in terms of an extension of the original class. Although similar devices

do not exist at the component level, a new component may be implemented by deriving

objects from those that implement the original component.

Developing new components: New development should occur only after a thorough

search has been made of existing core assets. In some organizations, the product team

may have to "contract" with a component development organization to build the needed

component. If it is built in the product organization, there should be product line

standards to follow for the creation of the core assets supporting the component.

Whether a product component is adapted or built from scratch, it should be reviewed

ultimately for "promotion" to the core asset base (and, in fact, should be developed with

that in mind). To help with that review, robustness analysis [Jacobson 97] can be applied

to determine how flexible the product is with respect to future changes in requirements.

By examining change cases (use cases that are not yet requirements), the team identifies

points in the system that would need changes in order to support the new requirements.

This provides a feedback loop to the component developers. Specifications for new

components and modifications to existing ones are the outputs of this analysis.

Specific Practices

The specific practices in this practice area all deal with component-level variability

mechanisms.

Variability mechanisms (1): Jacobson et al., discuss the mechanisms for supporting

variability in components, which are shown in the table below [Jacobson 97]. Each

mechanism provides a different type of variability. The variation of functionality happens

at different times depending on the type. Some of these variation types are included in the

specification implicitly. For example, when a parameter is used, the specification is taken

to include the specific type of component mentioned in the contract or any component

that is a specialization of that component. In the template instantiation example in the

table, the parameter to the template is Container, which permits variation implicitly via

the inheritance pattern. The Container parameter can be replaced by any of its subclasses,

such as Set or Bag.

Types of Variation [Jacobson 97]

Mechanism Time of
Specialization

Type of Variability

Inheritance At class definition
time

Specialization is done by modifying or adding to existing
definitions.

Example: LongDistanceCall inherits from PhoneCall.

Extension At requirements time One use of a system can be defined by adding to the
definition of another use.

Example: WithdrawalTransaction extends BasicTransaction.

Uses At requirements time One use of a system can be defined by including the
functionality of another use.

Example: WithdrawalTransaction uses the Authentication
use.

Configuration Previous to runtime A separate resource, such as file, is used to specialize the
component.

Example: JavaBeans properties file

Parameters At component
implementation time

A functional definition is written in terms of unbound
elements that are supplied when actual use is made of the
definition.

Example: calculatePriority(Rule)

Template
instantiation

At component
implementation time

A type specification is written in terms of unbound elements
that are supplied when actual use is made of the
specification.

Example: ExceptionHandler<Container>

Generation Before or during
runtime

A tool that produces definitions from user input.

Example: Configuration wizard

Variability can also be shown explicitly, but that is more cumbersome than the implicit

approach. The javadoc tool in Java lists all of the known subclasses of the class whose

documentation is being created. This requires that the documentation for the parent class

be regenerated every time a new subclass is declared. Any explicit listing of variants will

require this type of maintenance. The variations may also be captured in an activity

diagram that maps alternative paths.

One aspect of variability that is important in a product line effort is whether the variants

must be identified at the time of product line architecture definition or can be discovered

during the individual product's architectural phase. Inheritance allows for a variant to be

created without the existing component having knowledge of the new variant. Likewise,

template instantiation allows for the discovery of new parameter values after the template

is designed; however, the new parameter must satisfy the assumptions of the template,

which may not be stated explicitly in the interface of the formal parameter. In most cases,

configuration further constrains the variation to a fixed set of attributes and a fixed set of

values for each attribute.

Variability mechanisms (2): Anastasopoulos and Gacek expound a somewhat different

set of variability options [Anastasopoulos 00]. Their list includes:

• Aggregation/delegation, an object-oriented technique in which functionality of an

object is extended by delegating work it cannot normally perform to an object that

can. The delegating object must have a repertoire of candidates (and their

methods) known to it and assumes a role resembling that of a service broker.

• Inheritance, which assigns base functionality to a superclass and extended or

specialized functionality to a subclass. Complex forms include dynamic and

multiple inheritance, in addition to the more standard varieties.

• Parameterization, as described above.

• Overloading, which means reusing a named functionality to operate on different

types. Overloading promotes code reuse, but at the cost of understandability and

code complexity.

• Properties in the Delphi language, which are attributes of an object. Variability is

achieved by modifying the attribute values or the actual set of attributes.

• Dynamic class loading in Java, where classes are loaded into memory when

needed. A product can query its context and that of its user to decide at runtime

which classes to load.

• Static libraries, which contain external functions that are linked to after

compilation time. By changing the libraries, one can change the implementations

of functions whose names and signatures are known.

• Dynamic link libraries, which give the flexibility of static libraries but defer the

decision until runtime based on context and execution conditions.

• Conditional compilation puts multiple implementations of a module in the same

file, with one chosen at compile-time by providing appropriate preprocessor

directives.

• Frame technology. Frames are source files equipped with preprocessor-like

directives that allow parent frames to copy and adapt child frames and form

hierarchies. On top of each hierarchical assembly of frames lies a corresponding

specification frame that collects code from the lower frames and provides the

ready-to-compile module that results.

• Reflection, the ability of a program to manipulate data that represents information

about itself or its execution environment or state. Reflective programs can adjust

their behavior based on their context.

• Aspect-oriented programming, which was described in the "Architecture

Definition" practice area.

• Design patterns, which are extensible, object-oriented solution templates

catalogued in various handbooks (for example [Gamma 95]). The adapter pattern

was mentioned specifically as a variability mechanism earlier in this practice area.

Practice Risks

The overriding risk in component development is building unsuitable components for the

software product line applications. This will result in poor product quality, the inability to

field products quickly, low customer satisfaction, and low organizational morale.

Unsuitable components can come about by:

• Not enough variability: Components not only must meet their behavioral and

quality requirements (as imposed on them by the product line's software

architecture) but also must be tailorable in preplanned ways to enable product

developers to instantiate them quickly and reliably in the correct forms for

specific products.

• Too much variability: Building in too much variability can prevent the

components from being understood well enough to be used effectively, or can

cause unforeseen errors when the variabilities conflict with each other.

• Choosing the wrong variation mechanism(s) for the job: The wrong choice

can result in components that cannot be tailored at the time they need to be.

• Poor quality of components: Components of poor quality will set back any

effort, but poor core asset components will undermine the entire product line.

Product builders will lose confidence with the core asset builders, and pressure to

bypass them will mount. The "Testing" practice area should be applied to

ameliorate this risk.

Further Reading

[Szyperski 98]: Szyperski provides a comprehensive presentation on components. It

provides a survey of component models and covers supporting topics such as domain

analysis and component frameworks.

[Jacobson 97] and [Anastasopoulos 00]: These two works together provide a superb

compendium of component-level variability mechanisms that are available to a product

line component developer.

Mining Existing Assets

Mining existing assets refers to resurrecting and rehabilitating a piece of an old system to

serve in a new system for which it was not originally intended. Often it simply refers to

finding useful legacy code from an organization's existing systems portfolio and reusing

it within a new application. However, the code-only view completely misses the big

picture. We have known for years that in the grand scheme of things, code plays a small

role in the cost of a system. Coding is simply not what's difficult about system/software

development. Rich candidates for mining include a wide range of assets besides code—

assets that will pay lucrative dividends. Business models, rule bases, requirements

specifications, schedules, budgets, test plans, test cases, coding standards, algorithms,

process definitions, performance models, and the like are all wonderful assets for reuse.

The only reason so-called "code reuse" pays at all is because of the designs and

algorithms and interfaces that come along with the code [Clements 01a, p. 99].

For example, whole or partial architectures, and the design decisions they embody

(captured by documented rationale) are especially valuable. And if a mined architecture

is suitable, then probably the components that originally populated it can be migrated

along with it. But to determine fitness for reuse of either the architecture or its

components, it is necessary to obtain a thorough architectural understanding of the legacy

system. And, of course, the architect may be long gone. If good documentation does not

exist, the process of architecture reconstruction may need to be employed. Reconstruction

will reveal the interactions and relations among the architecture's components. It will

illuminate constraints for how, if mined, the components can interact within the

architecture of the new or updated software. It can also help to understand the tradeoff

options available for reusing components in a new or improved way [Kazman 02,

O'Brien 02]. Once the architecture has been extracted, it can be evaluated for suitability

using the techniques described in the "Architecture Evaluation" practice area.

Documentation is an asset that is often overlooked and may have significant reuse

potential. Much of the corporate knowledge about the software assets may be captured in

the existing legacy documentation assets. This makes these documentation assets highly

desirable candidates for mining and rehabilitation, especially where the associated

software assets are being mined and rehabilitated and they closely correlate with one

another.

Mining involves understanding of what is available and what is needed, and

rehabilitation. Both require support from analysts who are familiar with both the legacy

system and the new system. For software assets, rehabilitation usually requires the

support of the new system's architect, who will direct how the assets will be integrated

into the new architecture.

For software assets, focus first on large-grained assets that can be wrapped or that will

require only interface changes rather than changes in large chunks of the underlying

algorithms. Determine how the candidate asset can fit into the architecture of the targeted

new system. Don't forget to consider the requirements for performance, modifiability,

reliability, and other nonbehavioral qualities. Also, don't forget to include all the

nonsoftware assets associated with the software: requirements, design, test, and

management artifacts.

Once the existing assets have been organized and understood and candidate assets for

mining have been identified, the rehabilitation of these assets can begin. In many ways, a

mining initiative that involves extensive rehabilitation of assets can resemble a

reengineering project [Seacord 03, Sneed 01, Ulrich 02] or a development project in its

own right. Technical planning (as in the "Technical Planning" practice area) can help in

planning and coordinating the effort.

Aspects Peculiar to Product Lines

Mined assets for a product line must have the same qualities as newly developed core

assets. Mined assets must be (re)packaged with reuse in mind, must meet the product line

requirements, must align with the product line architecture, and must meet the quality

goals consistent with the goals of the product line. Product lines must focus on the

strategic, large-grained reuse of the mined assets. The primary issues that motivate large-

scale reuse for a product line are schedule, cost, and quality. The mined and rehabilitated

assets must meet the needs of the plurality of systems in the product line. A product line

accommodates a longer and wider view of future system change; any mined asset must be

robust enough to accommodate such change gracefully.

When mining an asset (software or otherwise) for a software product line, consider:

• its alignment with requirements for immediate products in terms of both common

features and variation points

• its appropriateness for potential future products

• the amount of effort required to make the asset's interface conform to the

constraints of the product line architecture

• the extensibility of the asset with respect to its potential future based on the future

evolution that will be required of the architecture

• its maintenance history

• other assets (for example, script and data files) that may be required from the

legacy system

• projected long term cost of the mined asset

When mining software assets for single systems, we look for components that perform

specific functions well. However, for product line systems, quality attributes such as

maintainability and suitability become more important over time. Thus, we might accept

mined assets for product lines that are suboptimal in fulfilling specific tasks if they meet

the critical quality-attribute goals. An asset's total cost of ownership across the products

for which it will be used should be lower than the sum of similar assets mined for one-

time use.

Application to Core Asset Development

The process of mining existing assets is largely about finding suitable candidates for core

assets of the product line. Software assets that are well structured and well documented

and have been used effectively over long periods of time can sometimes be included as

product line core assets with little or no change. Software assets that can be wrapped to

satisfy new interoperability requirements are also desirable. On the other hand, assets that

don't satisfy these requirements are undesirable and may have higher maintenance costs

over the long term. Depending on the legacy inventory and its quality, an assortment of

candidate assets is possible, from architectures to small pieces of code.

An existing architecture should be analyzed carefully before being accepted as the pivotal

core asset—the product line architecture. See the "Architecture Evaluation" practice area

for a discussion of what that analysis should entail.

Candidate software assets must align with the product line architecture, meet specified

component behavior requirements, and accommodate any specified variation points. In

some cases, a mined component may represent a potentially valuable core asset but won't

fit directly into the product line architecture. Usually, the component will need to be

changed to accommodate the constraints of the architecture. Sometimes a change in the

architecture might be easier, but of course this will have implications for other

components, for the satisfaction of quality goals, and for the support of the products in

the product line.

Once in the product line core asset base, mined assets are treated in the same way as

newly developed assets.

Application to Product Development

It is possible and reasonable to use mined assets for components that are unique to a

single product in the product line, but in this case the mining activity will become

indistinguishable from mining in the non-product-line case. The same issues discussed

above (paying attention to quality attributes, architecture, cost, and time-to-market) will

still apply. And it will be worth taking a long, hard look at whether the mined component

really is unique to a single product or could be used in other products as well, thus

making the cost of its rehabilitation more palatable. In that case, the team responsible for

mining would be wise to look for places where variability could be installed in the future,

should the asset in question ever turn out to be useful in a group of products.

Specific Practices

Options Analysis for Reengineering (OAR): OAR is a method that can be used to

evaluate the feasibility and economy of mining existing components for a product line.

OAR operates like a funnel in which a large set of potential assets is screened out so that

the effort can most efficiently focus on a smaller set that will most effectively meet the

technical and programmatic needs of the product line. OAR prescribes the following

steps [Bergey 01, Bergey 02a, Bergey03].

1. Establish mining context: First, capture your organization's product line

approach, legacy base, and expectations for mining components. Establish the

programmatic and technical drivers for the effort, catalogue the documentation

available from the legacy systems, and identify a broad set of candidate

components for mining. This task establishes the needs of the mining effort and

begins to illuminate the types of assets that will be most relevant for mining. It

also identifies the documentation and artifacts that are available, and it enables

focused efforts to close gaps in existing documentation.

2. Inventory components: Next, identify the legacy system components that can

potentially be mined for use in a product line core asset base. During this activity,

identify required characteristics of the components (such as functionality,

language, infrastructure support, and interfaces) in the context of the product line

architecture. This activity creates an inventory of candidate legacy components

together with a list of the relevant characteristics of those components. It also

creates a list of those needs that cannot be satisfied through the mining effort.

3. Analyze candidate components: Next, analyze the candidate set of legacy

components in more detail to evaluate their potential for use as product line

components. Screen them on the basis of how well they match the required

characteristics. This activity provides a list of candidate components, together

with estimates of the cost and effort required for rehabilitating those components.

4. Analyze mining options: Next, analyze the feasibility and viability of mining

various aggregations of components on the basis of cost, effort, and risk.

Assemble different aggregations of components and weigh their costs, benefits,

and risks.

5. Select mining option: Finally, select the mining option that can best satisfy the

organization's mining goals by balancing the programmatic and technical

considerations. First, establish drivers for making a final decision, such as cost,

schedule, risks and difficulty. Tradeoffs often can be established by this activity.

Evaluate each mining option (component aggregation) on the basis of how well it

satisfies the most critical driver. Select an option, and then develop a final report

to communicate the results.

OAR has been used to make decisions on mining components for a satellite tracking

system [Bergey 01]. OAR has also been used to evaluate the extent to which components

proposed by suppliers for reuse in a product line meet the product line's stated needs. It

has evaluated the types of changes required to fit the component into the product line

[Bergey 03, Muller 03]. OAR is in the process of being extended to handle other asset

types such as unit test cases and documentation.

Architecture recovery/reconstruction tools: Some tools that are available to assist in

the architecture reconstruction process include Rigi [Muller 88], the Software Bookshelf

[Finnegan 97], DISCOVER [Tilley 98], and the Dali workbench [Kazman 98] and the

ARMIN tool [O'Brien 03].

The ARMIN tool is a flexible, lightweight tool for architecture reconstruction. Other

tools are used to extract information that is then used by ARMIN to generate architectural

views. Using ARMIN involves five steps:

1. Information extraction, the activity uses tools such as parsers to extract
information from existing design and implementation artifacts such as the source

code.

2. Database construction, which stores the extracted information in a database for
future analysis. This may involve changing the format of the data.

3. View fusion, which augments the extracted information by combining
information to generate a set of low-level views of the software.

4. Architecture view composition, which generates a set of architecture views
through abstraction and visualizes these views and enables the user to explore and

manipulate views.

5. 5. Architecture analysis, which evaluates the resultant architecture and in some
cases evaluates the conformance of the as-built architecture obtained from

reconstruction to an as-designed architecture.

Tool support makes mining undocumented software assets more effective and

significantly less cumbersome by reducing the time it takes to ascertain what a piece of

software does and how it interacts with other parts of the system. Tools can be brought to

bear that automatically chart interconnections of various kinds among software elements.

More valuable than tools, however, are the people who worked on and are knowledgeable

about the legacy software. Find them if you can. They can tell you the strengths and

weaknesses of the software that weren't written down, and they can give you the "inside

story" that no tool can hope to recover.

Mining Architectures: In some cases the software architecture of an existing system can

become the product line architecture. Mining Architectures for Product Lines (MAP) is a

method that determines whether the architectures of existing systems are similar and

whether the corresponding systems have the potential of becoming a software product

line [O'Brien 01]. The MAP method combines techniques for architecture reconstruction

and product line analysis to analyze the architectural patterns and attributes of a set of

systems. This analysis determines if there are similar components and connections

between the components within these systems and examines their commonalities and

variabilities. MAP has been used in the development of a prototype product line

architecture for a sunroof system. MAP and OAR can also be used together where MAP

supports decision-making on reusing architectures, while OAR supports decision-making

on identifying components that fit within the constraints of the architecture.

Requirements Reuse and Feature Interaction Management: Developers realize that

complex applications are often best built by using a number of different components,

each performing a specialized set of services. But the components, each embodying

different requirements in different service domains, can interact in unpredictable ways.

How to design components to minimize or at least manage interaction is a current issue.

This problem of interaction becomes even more significant when reusing requirements.

Interactions must be detected and resolved in the absence of a specific implementation

framework. Shehata et al. stresses that an understanding of interaction management is key

to understanding how to reuse requirements and describes a conceptual process

framework for formulating and reusing requirements [Shehata 02]. Reusable

requirements are classified into three different levels of abstraction for software

requirements: domain-specific requirements, generic requirements and domain-

requirements frameworks. This classification is used as the basis for a reusability plan to

support the view of the importance of interaction management.

Wrapping: Wrapping involves changing the interface of a component to comply with a

new architecture, but not making other changes in the component's internals. In fact, pure

wrapping involves no change whatsoever in the component, but only interposing a new

thin layer of software between the original component and its clients. That thin layer

provides the new interface by translating to and from the old. There are enormous

advantages to reusing existing assets with little or no internal modification through

wrapping. As soon as any modification takes place, the associated documentation

changes, the test cases change, and a ripple effect takes place that influences other

associated software. Wrapping prevents this and allows the "as-is" reuse of many of the

assets associated with the software component, such as its test cases and internal design

documentation. The idea is to translate the "as-is" interface to the "to-be" interface.

Weiderman et al. discuss some of the available wrapping techniques [Weiderman 97].

Seacord [Seacord 01] discusses a case study that applied several wrapping techniques.

Adapting components: Software components that are being used in a context other than

the one for which they were originally developed often do not exactly fit their assigned

roles. There are a couple of techniques for accommodating these differences. The adapter

design pattern [Gamma 95] imposes an intermediary between two components. The

adapter can compensate for mismatches in number or types of parameters within a

service signature, provide synchronization in a multithreaded interaction, and adjust for

many other types of incompatibilities. Scripting languages can often be used to

implement the adapter.

Practice Risks

The major risks associated with mining are (1) failure to find the right assets and (2)

choosing the wrong assets. Both will result in schedule slippage and opportunity cost in

terms of what other productive activities the staff could have been carrying out. A

secondary risk is inadequate support for the mining operation, which will result in a

failed operation and the (misguided) impression that mining is not a viable option.

Specific risks associated with an unsuccessful search operation include:

• Flawed search: The search for reusable assets may be fruitless, resulting in a

waste of time and resources. Or, relevant assets may be overlooked, resulting in

time and resources being wasted duplication of what already exists. A special case

of the latter is when noncode assets are shortsightedly ignored. To minimize both

of these risks, build a catalogue of your reusable assets (including noncode assets)

and treat that catalogue as a core asset of the product line. It will save time and

effort next time.

• Overly successful search: There may be too many similar assets, resulting in too

much effort spent on analysis.

• Fuzzy criteria: The criteria for what to search for need to be crisp enough so that

an overly successful search is avoided, yet general enough so that not all viable

candidates are ruled out.

• Failure to search for nonsoftware assets: Failure to consider nonsoftware assets

in your search, such as specifications, test suites, procedures, budgets, work plans,

requirements, and design rationale, will reduce the effectiveness of any mining

operation.

• Inappropriate assets: Assets recovered from a search may appear to be usable

but later turn out to be of inferior quality or unable to accommodate the scope of

variation required.

• Bad rehabilitation estimates: Initial estimates of the cost of rehabilitation may

be inadequate, leading to escalating and unpredictable costs.

Organizational issues leading to mining risks include:

• Lack of corporate memory: Corporate memory may not be able to provide

sufficient data to utilize the software asset effectively.

• Inappropriate methods: The wrong reengineering methods and tools may be

selected, leading to schedule and cost overruns.

• Lack of tools: Tools required for the mining effort may not be integrated to the

extent necessary, leading to risky and expensive workarounds.

• Turf conflicts: Potential turf conflicts may undermine the decision process in

selecting between similar candidate assets. Or, a repository of assets may be off

limits for political or organizational reasons.

• Inability to tap needed resources: There may be an inability to free resources

from the group that originally created the component to rehabilitate or renovate it.

Further Reading

[Seacord 03]: This book on modernizing legacy systems by Seacord et al. provides

guidance on how to implement a successful modernization strategy and specifically

describes a risk-managed, incremental approach that encompasses changes in software

technologies, engineering processes, and business practices.

Software System Integration

Software system integration refers to the practice of combining individual software

components into an integrated whole. Software is integrated when components are

combined into subsystems or when subsystems are combined into products. In a waterfall

model, software system integration appears as a discrete step toward the end of the

development life cycle between component development and integration testing. In an

incremental model, integration is an ongoing activity; components and subsystems are

integrated as they are developed into multiple working mini-versions of the system. An

incremental approach to integration decreases risk, because problems encountered during

software integration are often the most complex. Object technologists are proponents of

incremental development, and object-oriented development methods are based on the

principle of ongoing integration practices

Integration is bound up in the concept of component interfaces. Recall from the

"Architecture Definition" practice area that an interface between two components is the

set of assumptions that the programmers of each component can safely make about the

other component [Parnas 72]. This includes its behavior, the resources it consumes, how

it acts in the face of an error, and other assumptions that should be documented as part of

a component's interface. This definition is in stark contrast to the simplistic (and quite

insufficient) notion of "interface" that merely refers to the "signature" or syntactic

interface that includes only the program's names and parameter types. This definition of

"interface" may let two components compile together successfully, but only the Parnas

definition (which subsumes the simpler one) will let two components work together

correctly. When interfaces are defined thoughtfully and documented carefully, integration

proceeds much more smoothly because the interfaces define how the components will

connect to and work with each other.

Aspects Peculiar To Product Lines

In a product line effort, software system integration occurs during the installation of core

assets into the core asset base and also during the building of an individual product. In the

former case, preintegrating as many of the software core assets as you can will make

product-building a much more economical operation [Clements 01a, p. 118]. In either

case, you need to consider integration early on in the development of the production plan

and architecture for the entire product line. The goal is to make software system

integration more straightforward and predictable.

In a product line, the effort involved in software system integration lies along a spectrum.

At one end, the effort is almost zero. If you know all of the products' variabilities in

advance, you can produce an integrated parameterized template of a generic system with

formal parameters. You can then generate final products by supplying the actual

parameters specific to the individual product requirements and then launching the

construction tool (along the lines of the Unix "make" utility). In this case, each product

consists entirely of core components; no product-specific code exists. This is the "system

generation" end of the integration spectrum.

At the other end of the spectrum, considerable coding may be involved to bring together

the right core components into a cohesive whole. Perhaps the components need to be

wrapped, or perhaps new components need to be designed and implemented especially

for the product. In this case, the integration more closely resembles that of a single-

system project.

Most software product lines occupy a middle point on the spectrum. Obviously, the

closer to the generation side of the spectrum you can align your production approach, the

easier integration will be and the more products you will be able to turn out in a short

period of time. For example, it used to take Cummins Inc. about a year to bring new

engine-control software to the point of acceptance testing. Now, after adopting a product

line approach, they can do it in about a week [Clements 01a, p. 417-442]

However, circumstances may prevent you from achieving pure generation. Perhaps a new

product has features you have not considered. Perhaps your application area prevents you

from knowing all of the variabilities up front. Or perhaps the variabilities are so

numerous or complex or interact with each other in such complicated ways, that building

the construction tool will be too expensive. And it may be that you do not want to turn

out many products in a short amount of time, but fewer products spread out over even

periods. In that case, the construction tool may be less appealing.

In software system integration for product lines, the cost of integration is amortized over

many products. Once the product line scope, core assets, and production plan have been

established in the core asset base, and a few systems have been produced from that base,

most of the software system integration work has been done. The interfaces have been

defined, and they work predictably. They have been tested. Components work with one

another. In subsequent variations and adaptations of the product, there is relatively little

software system integration effort when the variations and adaptations occur within

components. Even when new components are being added with new interfaces, the

models from previous interfaces can and should be followed, thus minimizing the work

and the risk of integration. So, in a very real sense, products (after the first one or two)

tend to be "preintegrated" such that there are few surprises when a system comes

together.

Application to Core Asset Development

When core assets are developed, acquired, or mined, remember to take integration into

account. Try to specify component interfaces not solely in natural language but in

machine-checkable form. Using languages such as Interface Description Language (IDL),

the syntactic or "signature" part of the interfaces can be specified early and kept current

continuously throughout the development process. Early on, the bodies for these

specifications can be stubbed out so that the code can be compiled and checked by a

machine for consistency. Absence of consistency errors does not guarantee smooth

integration—the components might assemble smoothly but still fail to work correctly

together—but it's a good start.

Evaluate any components you mine or acquire for their integrability and their granularity.

A component is "integrable" if its interfaces (in the Parnas sense) are well defined and

well documented so that it can potentially be wrapped for commonality with other

components (if not used with assurance as is). Finally, remember that it is generally

easier to build a system from small numbers of large, preintegrated pieces than from large

numbers of small, unintegrated components.

Application to Product Development

A big benefit of product line practice is that software system integration costs tend to

decrease for each of the subsequent products in the product line. If the production plan

calls for the addition of components or internal changes in components, some integration

may be required depending on the nature of the changes. Finally, in the system generation

case, integration becomes a matter of providing values for the parameters and launching

the construction tool. The key in all of these cases is that the integration occurs according

to a preordained and tested scheme.

Specific Practices

Interface languages: Programming languages such as IDL allow you to define machine-

independent syntactic interfaces. Programming languages such as Ada allow you to

define a compilable specification separate from the body. Ada programmers have found

that keeping a continuously integrated system using full specifications and stubbed

bodies decreases the integration time and costs dramatically. These languages and others

do not allow specification of the full semantic interfaces of components, but catching

signature-level integration bugs early is a win.

This practice applies primarily to the development of new components but retains the

leverage for subsequent products in a product line. One of the principal aspects of

CelsiusTech's product line solution was the institutionalization of continuous integration

using Ada rather than the more traditional all-at-once approach [Brownsword 96]. Most

object-oriented design techniques prescribe the development of architectural frameworks

and the use of patterns; both have been proven to support product lines and facilitate

software integration.

Wrapping: Wrapping, described as a specific practice in the "Mining Existing Assets"

practice area, involves writing a small piece of software to mediate between the interface

that a component user expects and the interface that the used component comes with.

Wrapping is a technique for integrating components whose interfaces you do not control,

such as components that you have mined or acquired from a third party [Seacord 01].

Middleware: An especially integrable kind of architecture employs a specific class of

software products to be the intermediaries between user interfaces on the one hand and

the data generators and repositories on the other. Such software is called "middleware"

and is used in connection with Distributed Object Technology (DOT) [Wallnau 97].

There are three prominent examples of middleware standards and technology. One is the

Common Object Request Broker Architecture (CORBA) and its various commercial

implementations [OMG 96]. The second is the Distributed Component Object Model

(DCOM). The third is the proprietary middleware solution that has grown around the

Java programming language. Middleware is discussed in more detail in the "Architecture

Definition" practice area.

System generation: In some limited cases, a new product in a product line can be

produced with no software system integration at all. These are cases in which all (or

most) of the product line variability is known in advance. In these cases, it may be

possible to have a template system from which a computer program produces the new

products in the product line simply by specifying variabilities as actual parameters. Such

a program is called a "system generator." One example of such a family of products

would be an operating system in which all of the variabilities of the system are known

ahead of time. Then, to generate the operating system, the "sysgen" program is simply

provided with a list of system parameters (such as, processor, disk, and peripheral types,

and their performance characteristics), and the program produces a tailored operating

system rather than integrating all the components of an operating system.

FAST generators: In Software Product-Line Engineering [Weiss 99], Weiss and Lai

describe a process for building families of systems using generator technology. The

Family-Oriented Abstraction, Specification, and Translation (FAST) process begins by

explicitly identifying specific commonalities and variabilities among potential family

members and then designing a small special-purpose language to express both. The

language is used as the basis for building a generator. Turning out a new family member

(product) is then simply a matter of describing the product in the language and

"compiling" that description to produce the product.

Practice Risks

The major risks associated with software system integration include:

• Natural-language interface documentation: Relying too heavily on natural

language for system interface documentation and not relying heavily enough on

the automated checking of system interfaces will lead to integration errors.

Natural language interfaces are imprecise, incomplete, and error-prone. Carrying

forward in the face of undetected interface errors increases the cost of correcting

such errors and increases the overall cost of integration. Automated tools,

however, are more oriented to syntactic checking and are less effective at

checking race conditions, semantic mismatch, fidelity mismatch, and so on. Some

interface specifications must still be done largely with natural language and are

still error-prone.

• Component granularity: There is a risk in trying to integrate components that

are too small. The cost of integration is directly proportional to the number and

size of the interfaces. If the components are small, the number of interfaces

increases proportionally, if not geometrically, depending on the connections they

have to each other. This leads to greatly increased testing time. One of the lessons

of the CelsiusTech case study was that "CelsiusTech found it economically

infeasible to integrate large systems at the Ada-unit level" [Brownsword 96].

Although the component granularity is dictated by the architecture, we capture the

risk here, because this is where the consequence will make itself known.

• Variation support: There is a risk in trying to make variations and adaptations

that are too large or too different from existing components. When new

components or subsystems are added, they must be integrated. Variations and

adaptations within components are relatively inexpensive as far as system

integration is concerned, but new components may cause architectural changes

that structure the product in ways that cause integration problems.

Further Reading

[Weiss 99] describes the Family-Oriented Abstraction, Specification, and Translation

(FAST) process, which includes a generator-building step that essentially obviates the

integration phase of product development.

[Wallnau 97] provides a nicely digestible overview of middleware.

1. Our use of the word framework is meant to suggest a conceptual index, a frame of reference, for the information essential to
success with software product lines. We are using the dictionary definition with no intended connections to current technical
usages in the vein of architectural frameworks or application frameworks.

© 2007 Carnegie Mellon University

