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Introduction 

A product line is a set of products that together address a particular market segment or 

fulfill a particular mission. Product lines are, of course, nothing new in manufacturing. 

Boeing builds one, and so do Ford, Dell, and even McDonald's. Each of these companies 

exploits commonality in different ways. Boeing, for example, developed the 757 and 767 

transports in tandem, and the parts lists for these very two different aircraft overlap by 

about 60%, achieving significant economies of production and maintenance. But software 

product lines based on inter-product commonality are a relatively new concept that is 

rapidly emerging as a viable and important software development paradigm. Product 

flexibility is the anthem of the software marketplace, and product lines fulfill the promise 

of tailor-made systems built specifically for the needs of particular customers or customer 

groups. A product line succeeds because the commonalities shared by the software 

products can be exploited to achieve economies of production. The products are built 

from common assets in a prescribed way.  

Companies are finding that this practice of building sets of related systems from common 

assets can yield remarkable quantitative improvements in productivity, time to market, 

product quality, and customer satisfaction. They are finding that a software product line 

can efficiently satisfy the current hunger for mass customization. Organizations that 

acquire, as opposed to build, software systems are finding that commissioning a set of 

related systems as a commonly developed product line yields economies in delivery time, 

cost, simplified training, and streamlined acquisition.  

But along with the gains come risks. Using a product line approach constitutes a new 

technical strategy for the organization. Organizational and management issues constitute 

obstacles that are at least as critical to overcome and often add more risk because they are 

less obvious. Building a software product line and bringing it to market requires a blend 

of skillful engineering as well as both technical and organizational management. 

Acquiring a software product line also requires this same blend of skills to position the 

using organizations to effectively exploit the commonality of the incoming products, as 

well as to lend sound technical oversight and monitoring to the development effort. These 

skills are necessary to overcome the pitfalls that may bring failure to an unsophisticated 

organization.  

We've worked to gather information and identify key people with product line 

experience. Through surveys, workshops, conferences, case studies, and direct 

collaboration with organizations on product line efforts, we have amassed and 



categorized a reservoir of information. Organizations that have succeeded with product 

lines vary widely in  

• the nature of their products 

• their market or mission 

• their business goals 

• their organizational structure 

• their culture and policies 

• their software process discipline 

• the maturity and extent of their legacy artifacts 

Nevertheless, there are universal essential activities and practices that emerge, having to 

do with the ability to construct new products from a set of common assets while working 

under the constraints of various organizational contexts and starting points. This 

document describes a framework
1
 for product line development. The framework is an on-

line product line encyclopedia; it is a web-based document describing the essential 

activities and practices, in both the technical and organizational areas. These activities 

and practices are those in which an organization must be competent before it can reap the 

maximum benefit from fielding a product line of software or software-intensive systems. 

The audience for this framework includes members of an organization who are in a 

position to make or influence decisions regarding the adoption of product line practices 

as well as those who are already involved in a product line effort. 

Purpose 

The goals of this framework are 

• to identify the foundational concepts underlying software product lines and 

the essential activities to consider before developing a product line 

• to identify practice areas that an organization developing software product 

lines must master 
Although these practice areas may be required for engineering any software 

system, the product line context imposes special constraints so that they must be 

carried out in a non-conventional way.  

• to define practices in each practice area, where current knowledge is 

sufficient to do so  
For example, "Configuration Management" is a practice area that applies to any 

software development effort, but it has special implications for product line 

development. Thus, we identify "Configuration Management" as a practice area, 

but we also are able to define one or more effective configuration management 

practices for product lines. In many cases, the definition of the practice is a 

reference to a source outside this document.  

• to provide guidance to an organization about how to move to a product line 

approach for software 



An organization using this framework should be able to understand the state of its 

product line capabilities by (a) understanding the set of essential practice areas, (b) 

assessing how practices in those areas differ from their conventional forms for single 

product development, and (c) comparing that set of practices to the organization's 

existing skill set.  

As such, this framework can serve as the basis for a technology and improvement plan 

aimed at achieving product line development goals.  

Every organization is different and comes to the product line approach with different 

goals, missions, assets, and requirements. Practices for a product line builder will be 

different from those for a product line acquirer, and different still for a component 

vendor. Appropriate practices will also vary according to 

• the type of system being built  

• the depth of domain experience  

• the legacy assets on hand  

• the organizational goals  

• the maturity of artifacts and processes  

• the skill level of the personnel available  

• the production strategy embraced  

• many other factors  

There is no one correct set of practices for every organization; we do not prescribe a 

methodology consisting of a set of specific practices. The framework is not a maturity 

model
1
 or a process guide. We are prescriptive about the practice areas and we do 

prescribe that organizations adopt appropriate practices in each practice area. This 

document contains practices that we have seen work successfully.  

The framework has been used by organizations, large and small, to help them plan for 

their adoption of the product line approach, as well as to help them gauge how they're 

doing and in what areas they're falling short. We use it to guide our collaborations with 

customers and to focus in what areas our collaboration will best assist our customers. We 

also use it as the basis for conducting Product Line Technical Probes, which are formal 

diagnostics of an organization's product line fitness [Clements 01a, Chapter 8; see also 

http://www.sei.cmu.edu/productlines/pltp.html]. The framework is a living, growing 

document; it represents our best picture of sound product line practice as described to us 

by its many reviewers and users: all of whom are practitioners. The framework is 

specifically about software product lines and as such has served successfully as the basis 

for technology and improvement plans aimed at achieving product line goals. We 

understand that since its first release organizations have found the framework very useful 

in product lines not related to software. We make no claims about its utility in non-

software contexts but recognize that many of the underlying principles and practices are 

likely relevant. 

What is a Software Product Line? 



A software product line is a set of software-intensive systems that share a common, 

managed set of features satisfying the specific needs of a particular market segment or 

mission and that are developed from a common set of core assets in a prescribed way.  

This definition is consistent with the definition traditionally given for any product line. 

But it adds more; it puts constraints on the way in which the systems in a software 

product line are developed. Why? Because substantial production economies can be 

achieved when the systems in a software product line are developed from a common set 

of assets in a prescribed way, in contrast to being developed separately, from scratch or in 

an arbitrary fashion. It is exactly these production economies that make the software 

product line approach attractive.  

How is production made more economical? Each product is formed by taking applicable 

components from the base of common assets, tailoring them as necessary through 

preplanned variation mechanisms such as parameterization or inheritance, adding any 

new components that may be necessary, and assembling the collection according to the 

rules of a common, product-line-wide architecture. Building a new product (system) 

becomes more a matter of assembly or generation than one of creation; the predominant 

activity is integration rather than programming. For each software product line there is a 

predefined guide or plan that specifies the exact product-building approach.  

Certainly the desire for production economies is not a new business goal, and neither is a 

product line solution. But a software product line is a relatively new idea, and it should 

seem clear from our description that software product lines require a different technical 

tack. The more subtle consequence is that software product lines require much more than 

new technical practices.  

The common set of assets and the plan for how they are used to build products don't just 

materialize without planning, and they certainly don't come free. They require 

organizational foresight, investment, planning, and direction. They require strategic 

thinking that looks beyond a single product. The disciplined use of the common assets to 

build products doesn't just happen either. Management must direct, track, and enforce the 

use of the assets. Software product lines are as much about business practices as they are 

about technical practices.  

Software product lines give economies of scope, which means that you take economic 

advantage of the fact that many of your products are very similar—not by accident, but 

because you planned it that way. You make deliberate, strategic decisions and are 

systematic in effecting those decisions.  

What Software Product Lines Are Not 

There are many approaches that at first blush could be confused with software product 

lines. Describing what you don't mean is often as instructive as describing what you do 

mean. When we speak of software product lines, we don't mean any of the following: 



Fortuitous Small-Grained Reuse 

Reuse, as a software strategy for decreasing development costs and improving quality, is 

not a new idea, and software product lines definitely involve reuse—reuse, in fact, of the 

highest order. So what's the difference? Past reuse agendas have focused on the reuse of 

relatively small pieces of code—that is, small-grained reuse. Organizations have built 

reuse libraries containing algorithms, modules, objects, or components. Almost anything 

a software developer writes goes into the library. Other developers are then urged (and 

sometimes required) to use what the library provides instead of creating their own 

versions. Unfortunately, it often takes longer to locate these small pieces and integrate 

them into a system than it would take to build them anew. Documentation, if it exists at 

all, might explain the situation for which the piece was created but not how it can be 

generalized or adapted to other situations. The benefits of small-grained reuse depend on 

the predisposition of the software engineer to use what is in the library, the suitability of 

what is in the library for the engineer's particular needs, and the successful adaptation and 

integration of the library units into the rest of the system. If reuse occurs at all under these 

conditions, it is fortuitous and the payoff is usually nonexistent.  

In a software product line approach, the reuse is planned, enabled, and enforced—the 

opposite of opportunistic. The asset base includes those artifacts in software development 

that are most costly to develop from scratch—namely, the requirements, domain models, 

software architecture, performance models, test cases, and components. All of the assets 

are designed to be reused and are optimized for use in more than a single system. The 

reuse with software product lines is comprehensive, planned, and profitable.  

Single-System Development with Reuse 

Suppose you are developing a new system that seems very similar to one you have built 

before. You borrow what you can from your previous effort, modify it as necessary, add 

whatever it takes, and field the product, which then assumes its own maintenance 

trajectory separate from the first. What you have done is what is called "clone and own." 

You certainly have taken economic advantage of previous work; you have reused a part 

of another system. But now you have two entirely different systems, not two systems 

built from the same base. This is again ad hoc reuse.  

There are two major differences between this approach and a software product line 

approach. First, software product lines reuse assets that were designed explicitly for 

reuse. Second, the product line is treated as a whole not as multiple products that are 

viewed and maintained separately. In mature product line organizations, the concept of 

multiple products disappears. Each product is simply a tailoring of the common assets, 

which constitute the core of each product, plus perhaps a small collection of additional 

artifacts unique to that product. It is the core assets that are designed carefully and 

evolved over time. It is the core assets that are the organization's premiere intellectual 

property.  



Just Component-Based Development 

Software product lines rely on a form of component-based development, but much more 

is involved. The typical definition of component-based development involves the 

selection of components from an in-house library or the marketplace to build products. 

Although the products in software product lines certainly are composed of components, 

these components are all specified by the product line architecture. Moreover, the 

components are assembled in a prescribed way, which includes exercising built-in 

variability mechanisms in the components to put them to use in specific products. The 

prescription comes from both the architecture and the production plan, and is missing 

from standard component-based development. In a product line, the generic form of the 

component is evolved and maintained in the core asset base. In component-based 

development, if any variation is involved, it is usually accomplished by writing code, and 

the variants are most likely maintained separately. Component-based development also 

lacks the technical and organizational management aspects that are so important to the 

success of a software product. 

Just a Reconfigurable Architecture 

Reference architectures and object-oriented frameworks are designed to be reused in 

multiple systems and to be reconfigured as necessary. Reusing architectural structures is 

a good idea because the architecture is a pivotal part of any system and a costly one to 

construct. A product line architecture is designed to support the variation needed by the 

products in the product line, and so making it reconfigurable makes sense. But the 

product line architecture is just one asset, albeit an important one, in the product line's 

core asset base. 

Releases and Versions of Single Products 

Organizations routinely produce new releases and versions of products. Each of these 

new versions and releases is typically constructed using the architecture, components, test 

plans, and other features of the prior releases. Why are software product lines different? 

First, in a product line there are multiple simultaneous products, all of which are going 

through their own cycles of release and versioning simultaneously. Thus, the evolution of 

a single product must be considered within a broader context—namely, the evolution of 

the product line as a whole. Second, in a single-product context, once a product is 

updated there's often no looking back—whatever went into the production of earlier 

products is no longer considered to be of any value, or at best, retired as soon as 

practicable. But in a product line, an early version of a product that is still considered to 

have market potential can easily be kept as a viable member of the family: it is, after all, 

an instantiation of the core assets, just like other versions of other products. 

Just a Set of Technical Standards 

Many organizations set up technical standards to limit the choices their software 

engineers can make regarding the kinds and sources of components to incorporate in 



systems. They audit for compliance at architecture and design reviews to ensure that the 

standards are being followed. For example, the developer might be able to select between 

three identified database choices and two identified Web browsers, but must use a 

specific middleware or spreadsheet product if either is necessary. Technical standards are 

constraints to promote interoperability and to decrease the cost associated with 

maintenance and support of commercial components. An organization that undertakes a 

product line effort may have such technical standards, in which case the product line 

architecture and components will need to conform to those standards. However, the 

standards are simply constraints that are input to the software product line, no more.  

Benefits and Costs of a Product Line 

Software product line approaches accrue benefits at multiple levels. This section lists the 

benefits (and some of the costs) from the perspective of the organization as a whole, 

individuals within the organization, and the core assets involved in software product line 

production.  

Organizational Benefits 

The organizations that we have studied
1
 have achieved remarkable benefits that are 

aligned with commonly held business goals. Some of these include:  

• large-scale productivity gains  

• decreased time-to-market  

• increased product quality  

• increased customer satisfaction  

• more efficient use of human resources  

• ability to effect mass customization  

• ability to maintain market presence  

• ability to sustain unprecedented growth  

These benefits give organizations a competitive advantage. They are derived from the 

reuse of the core assets in a strategic and prescribed way. Once the product line core asset 

repository is established, there is a direct savings each time a product is built, associated 

with each of the following:  

• Requirements: There are common product line requirements. Product 

requirements are deltas to this established requirements base. Extensive 

requirements analysis is saved. Feasibility is assured.  

• Architecture: An architecture for a software system represents a large investment 

of time from the organization's most talented engineers. The quality goals for a 

system—its performance, reliability, modifiability, and so on—are largely 

allowed or precluded once the architecture is in place. If the architecture is wrong, 

the system cannot be saved. The product line architecture is used for each product 

and need only be instantiated. Considerable time and risk are spared. 



• Components: Up to 100% of the components in the core asset base are used in 

each product. These components may need to be altered using inheritance or 

parameters, but the design is intact, as are data structures and algorithms. In 

addition, the product line architecture provides component specifications for all 

but any unique components that may be necessary. 

• Modeling and analysis: Performance models and the associated analyses are 

existing product line core assets. With each new product there is extremely high 

confidence that the timing problems have been worked out and that the bugs 

associated with distributed computing—synchronization, network loading, and 

absence of deadlock—have been eliminated. 

• Testing: Generic test plans, test processes, test cases, test data, test harnesses, and 

the communication paths required to report and fix problems have already been 

built. They need only be tailored on the basis of the variations related to the 

product. 

• Planning: The production plan has already been established. Baseline budgets 

and schedules from previous product development projects already exist and 

provide a reliable basis for the product work plans.  

• Processes: Configuration control boards, configuration management tools and 

procedures, management processes, and the overall software development process 

are in place, have been used before, and are robust, reliable, and responsive to the 

organization's special needs. 

• People: Fewer people are required to build products and the people are more 

easily transferred across the entire line.  

Product lines enhance quality. Each new system takes advantage of all of the defect 

elimination in its forebears; developer and customer confidence both rise with each new 

instantiation. The more complicated the system, the higher the payoff for solving the 

vexing performance, distribution, reliability, and other engineering issues once for the 

entire family. 

Individual Benefits 

The benefits to individuals within an organization depend upon their respective roles. The 

following table shows observed benefits for some of the individual stakeholders in the 

product line organization. 

Product Line Benefits for Individual Stakeholders 

Stakeholder 
Role 

Benefits 

CEO Large productivity gains; greatly improved time to market; sustained growth 
and market presence; ability to economically capture a market niche. 

COO Efficient use of work force; ability to explore new markets, new technology, 
and/or new products; fluid personnel pool. 

Technical 
Manager 

Increased predictability; well-established roles and responsibilities; efficient 
production. 

Software Product Higher morale; greater job satisfaction; can focus on truly unique aspects of 



Developer products; easier software integration; fewer schedule delays; greater mobility 
within the organization; more marketable; have time to learn new technology; 
are part of a team building products with an established quality record and 
reputation. 

Architect or Core 
Asset Developer 

Greater challenge; work has more impact; prestige within the organization; as 
marketable as the product line. 

Marketer Predictable high quality products; predictable delivery; can sell products with a 
pedigree. 

Customer Higher quality products; predictable delivery date; predictable cost; known 
costs for unique requirements; well-tested training materials and 
documentation; shared maintenance costs; potential to participate in a user's 
group.  

End User Fewer defects; better training materials and documentation; a network of other 
users. 

Benefits versus Costs 

We have established that the strategic reuse of core assets that defines product line 

practice represents an opportunity for benefits across the board, but the picture is not yet 

complete. Launching a software product line is a business decision that should not be 

made randomly. Any organization that launches a product line should have in mind 

specific and solid business goals that it plans to achieve through product line practice. 

Moreover, the benefits given above should align carefully with the achievement of those 

goals, because a software product line requires a substantial start-up investment as well as 

ongoing costs to maintain the core assets. We have already listed the benefits associated 

with the reuse of particular core assets. Usually a cost and a caveat are associated with 

the achievement of each benefit. The following table gives a partial list of core assets 

with the typical additional costs. We repeat the benefits for the sake of comparison. 

Costs and Benefits of Product Lines 

Core Asset Benefit Additional Cost 

Requirements: The 
requirements are written for 
the group of systems as a 
whole, with requirements for 
individual systems specified 
by a delta or an increment to 
the generic set. 

Commonality and variation are 
documented explicitly, which will 
help lead to an architecture for 
the product line. New systems in 
the product line will be much 
simpler to specify because the 
requirements are reused and 
tailored. 

Capturing requirements for a 
group of systems may require 
sophisticated analysis and 
intense negotiation to agree on 
both common requirements and 
variation points acceptable for all 
the systems.  

Architecture: The 
architecture for the product 
line is the blueprint for how 
each product is assembled 
from the components in the 
core asset base.  

Architecture represents a 
significant investment by the 
organization's most talented 
engineers. Leveraging this 
investment across all products in 
the product line means that for 
subsequent products, the most 
important design step is largely 
completed. 

The architecture must support 
the variation inherent in the 
product line, which imposes an 
additional constraint on the 
architecture and requires greater 
talent to define. 



Software components: 
The software components 
that populate the core asset 
base form the building 
blocks for each product in 
the product line. Some will 
be reused without alteration. 
Others will be tailored 
according to prespecified 
variation mechanisms. 

The interfaces for components 
are reused. For actual 
components that are reused, the 
design decisions, data 
structures, algorithms, 
documentation, reviews, code, 
and debugging effort can all be 
leveraged across multiple 
products in the product line. 

The components must be 
designed to be robust and 
extensible so that they are 
applicable across a range of 
product contexts. Variation points 
must be built in or at least 
anticipated. Often, components 
must be designed to be more 
general without loss of 
performance.  

Performance modeling 
and analysis: For products 
that must meet real-time 
constraints (and some that 
have soft real-time 
constraints), analysis must 
be performed to show that 
the system's performance 
will be adequate. 

A new product can be fielded 
with high confidence that real-
time and distributed-systems 
problems have already been 
worked out, because the 
analysis and modeling can be 
reused from product to product. 
Process scheduling, network 
traffic loads, deadlock 
elimination, data consistency 
problems, and the like will all 
have been modeled and 
analyzed. 

Reusing the analysis may 
impose constraints on moving of 
processes among processors, on 
creation of new processes, or on 
synchronization of existing 
processes. 

Business case, market 
analysis, marketing 
collateral, cost and 
schedule estimates: These 
are the up-front business 
necessities involved in any 
product. Generic versions 
are built that support the 
entire product line.  

All of the business and 
management artifacts involved in 
turning out already exist at least 
in a generic form and can be 
reused. 

All of these artifacts must be 
generic, or be made extensible to 
accommodate product variations. 

Tools and processes for 
software development and 
for making changes: The 
infrastructure for turning out 
a software product requires 
specific product line 
processes and appropriate 
tool support. 

Configuration control boards, 
configuration management tools 
and procedures, management 
processes, and the overall 
software development process 
are in place and have been used 
before. Tools and environments 
purchased for one product can 
be amortized across the entire 
product line. 

The boards, process definitions, 
tools, and procedures must be 
more robust to account for 
unique product line needs and 
for the differences between 
managing a product line and 
managing a single product. 

Test cases, test plans, test 
data: There are generic 
testing artifacts for the entire 
set of products in the 
product line with variation 
points to accommodate 
product variation. 

Test plans, test cases, test 
scripts, and test data have 
already been developed and 
reviewed for the components 
that are reused. Testing artifacts 
represent a substantial 
organizational investment. Any 
saving in this area is a benefit. 

All of the testing artifacts must be 
more robust because they will 
support more than one product. 
They also must be extensible to 
accommodate variation among 
the products.  

People, skills, training: In 
a product line organization, 
even though members of the 

Because of the commonality of 
the products and the production 
process, personnel can be more 

Personnel must be trained 
beyond general software 
engineering and corporate 



development staff may work 
on a single product at a 
time, they are in reality 
working on the entire 
product line. The product 
line is a single entity that 
embraces multiple products. 

easily transferred among product 
projects as required. Their 
expertise is usually applicable 
across the entire product line. 
Their productivity, when 
measured by the number of 
products to which their work 
applies, rises dramatically. 
Resources spent on training 
developers to use processes, 
tools, and system components 
are expended only once. 

procedures to ensure that they 
understand software product line 
practices and can use the core 
assets and procedures 
associated with the product line. 
New personnel must be much 
more specifically trained for the 
product line. Training materials 
must be created that address the 
product line. As product lines 
mature, the skills required in an 
organization tend to change, 
away from programming and 
toward relevant domain expertise 
and technology forecasting. This 
transition must be managed. 

For each of these core assets, the investment cost is usually much less than the value of 

the benefit. Also, most of the costs are up-front costs associated with establishing the 

product line. The benefits, on the other hand, accrue with each new product release. Once 

the approach is established, the organization's productivity accelerates rapidly and the 

benefits far outweigh the costs. However, an organization that attempts to institute a 

product line without being aware of the costs is likely to abandon the product line 

concept before seeing it through.  

It takes a certain degree of maturity in the developing organization to field a product line 

successfully. Technology change is not the only barrier to successful product line 

adoption. Changes in management and organizational practices are also involved. 

Successful adoption of software product line practice is a careful blend of technological, 

process, organizational, and business improvements.  

Organizations of all stripes have enjoyed quantitative benefits from their product lines. 

Product line practitioners have also shared with us examples of the costs, such as:  

• canceling three large projects so that sufficient resources could be devoted to the 

up-front development of core assets 

• reassigning staff who could not adjust to the product line way of doing business 

• suspending product delivery for an extended period while putting the new 

practices into place 

Certainly not every organization must undergo such dramatic measures in order to adopt 

the software product line approach. And the companies that bore these costs and made 

the successful transition to product line practice all agree that the payoff more than 

compensated for the effort. But these costs underscore the point that product line practice 

is often uncharted territory and may not be the right path for every organization.  

 



1. The SEI has published several detailed case studies of successful product line organizations and the benefits they have enjoyed. These may 

be found in [Clements 01a] as well as http://www.sei.cmu.edu/productlines/plp_publications.html 

A Note on Terminology 

In this document we use the following terms:  

A software product line is a set of software-intensive systems sharing a common, 

managed set of features that satisfy the specific needs of a particular market segment or 

mission and that are developed from a common set of core assets in a prescribed way. 

This is the definition we provided in What is a Software Product Line. 

Core assets are those reusable artifacts and resources that form the basis for the software 

product line. Core assets often include, but are not limited to, the architecture, reusable 

software components, domain models, requirements statements, documentation and 

specifications, performance models, schedules, budgets, test plans, test cases, work plans, 

and process descriptions. The architecture is key among the collection of core assets. 

Development is a generic term used to describe how core assets (or products) come to 

fruition. Software enters an organization in any one of three ways: the organization can 

build it itself (either from scratch or by mining legacy software), purchase it (buy it, 

largely unchanged, off the shelf), or commission it (contract with someone else to 

develop it especially for them). So our use of the term "development" may actually 

involve building, acquisition, purchase, retrofitting earlier work, or any combination of 

these options. We recognize and address these options, but we use "development" as the 

general term.  

A domain is a specialized body of knowledge, an area of expertise, or a collection of 

related functionality. For example, the telecommunications domain is a set of 

telecommunications functionality, which in turn consists of other domains such as 

switching, protocols, telephony, and network. A telecommunications software product 

line is a specific set of software systems that provide some of that functionality. 

Software product line practice is the systematic use of core assets to assemble, 

instantiate, or generate the multiple products that constitute a software product line. The 

choice of verb depends on the production approach for the product line. Software product 

line practice involves strategic, large-grained reuse. 

Some practitioners use a different set of terms to convey essentially the same meaning. In 

this alternate terminology, a product line is a profit and loss center concerned with 

turning out a set of products; it refers to a business unit, not a set of products. The 

product family is that set of products, which we call the product line. The core asset base 

is called the platform. Previously, what we call core asset development was often referred 

to as domain engineering and what we call product development was referred to as 

application engineering.  



The terminology is not as important as the concepts. That having been said, you might 

encounter different sets of terms in other places and should be able to translate between 

them.  

Starting Versus Running a Product Line  

Many of the practice areas in this framework are written from the point of view of 

describing an in-place product line capability. We recognize that the framework will be 

used to help an organization put that capability in place, and ramping up to a product line 

is in many ways different than running one on a day-to-day basis.  

We felt it was important to describe the end or "steady state" so that readers could 

understand the goals. However, to address the issues of starting (rather than running) a 

product line shop, the reader is referred to the "Launching and Institutionalizing" practice 

area. 

Product Line Essential Activities 

At its essence, fielding of a product line involves core asset development and product 

development using the core assets, both under the aegis of technical and organizational 

management. Core asset development and product development from the core assets can 

occur in either order: new products are built from core assets, or core assets are extracted 

from existing products. Often, products and core assets are built in concert with each 

other. The following figure illustrates this triad of essential activities.  

 



The Three Essential Activities for Software Product Lines 

Each rotating circle represents one of the essential activities. All three are linked together 

and in perpetual motion, showing that all three are essential, are inextricably linked, can 

occur in any order, and are highly iterative.  

The rotating arrows indicate not only that core assets are used to develop products, but 

also that revisions of existing core assets or even new core assets might, and most often 

do, evolve out of product development. The diagram in the above figure is neutral in 

regard to which part of the effort is launched first. In some contexts, already existing 

products are mined for generic assets—perhaps a requirements specification, an 

architecture, or software components—which are then migrated into the product line's 

core asset base. In other cases, the core assets may be developed or procured for later use 

in the production of products.  

There is a strong feedback loop between the core assets and the products. Core assets are 

refreshed as new products are developed. Use of core assets is tracked, and the results are 

fed back to the core asset development activity. In addition, the value of the core assets is 

realized through the products that are developed from them. As a result, the core assets 

are made more generic by considering potential new products on the horizon. There is a 

constant need for strong, visionary management to invest resources in the development 

and sustainment of the core assets. Management must also precipitate the cultural change 

to view new products in the context of the available core assets. Either new products must 

align with the existing core assets, or the core assets must be updated to reflect the new 

products that are being marketed. Iteration is inherent in product line activities—that is, 

in turning out core assets, in turning out products, and in the coordination of the two. In 

the next three sections we examine the three essential activities in greater detail.  

Core Asset Development 

The goal of the core asset development activity is to establish a production capability for 

products. The following figure illustrates the core asset development activity along with 

its outputs and necessary inputs.  



 

Core Asset Development 

This activity, like its counterparts, is iterative. The rotating arrows suggest that there is no 

one-way causal relationship from inputs to outputs; the inputs and outputs of this activity 

affect each other. For example, slightly expanding the product line scope (one of the 

outputs) may admit whole new classes of systems to examine as possible sources of 

legacy assets (one of the inputs). Similarly, an input production constraint (such as 

mandating the use of a particular middleware product) may lead to restrictions on the 

architectural patterns (other inputs) that will be considered for the product line as a whole 

(such as the message-passing distributed object pattern). This restriction, in turn, will 

determine which preexisting assets are candidates for reuse or mining (still other inputs).  

Three things are required for a production capability to develop products, and these three 

things are the outputs of the core asset development activity.  

1. Product line scope:  
The product line scope is a description of the products that will constitute the 

product line or that the product line is capable of including. At its simplest, scope 

may consist of an enumerated list of product names. More typically, this 

description is cast in terms of the things that the products all have in common, and 

the ways in which they vary from one another. These might include features or 

operations they provide, performance or other quality attributes they exhibit, 

platforms on which they run, and so on.  



Defining the product line scope is often referred to as scoping. For a product line 

to be successful, its scope must be defined carefully. If the scope is too large and 

product members vary too widely, then the core assets will be strained beyond 

their ability to accommodate the variability, economies of production will be lost, 

and the product line will collapse into the old-style one-at-a-time product 

development effort. If the scope is too small, then the core assets might not be 

built in a generic enough fashion to accommodate future growth, and the product 

line will stagnate: economies of scope will never be realized, and the full potential 

return on investment will never materialize.  

The scope of the product line must target the right products, as determined by 

knowledge of similar products or systems, the prevailing or predicted market 

factors, the nature of competing efforts, and the organization's business goals for 

embarking on a product line approach (such as merging a set of similar but 

currently independent product development projects).  

The scope definition of a product line is itself a core asset, evolved and 

maintained over the product line's lifetime. Because it determines so much about 

the other core assets – in particular, what products they can support – we call it 

out separately. 

2. Core assets:  
Core assets are the basis for production of products in the product line. As we 

have already described, these core assets almost certainly include an architecture 

that the products in the product line will share, as well as software components 

that are developed for systematic reuse across the product line. Any real-time 

performance models or other architecture evaluation results associated with the 

product line architecture are core assets. Software components may also bring 

with them test plans, test cases, and all manner of design documentation. 

Requirements specifications and domain models are core assets, as is the 

statement of the product line's scope. Commercial off-the-shelf (COTS) software, 

if adopted, also constitute core assets. So do management artifacts such as 

schedules, budgets, and plans. Also, any production infrastructure such as 

domain-specific languages, tools, generators, and environments are core assets as 

well.  

Among the core assets, the architecture warrants special treatment. A product line 

architecture is a software architecture that will satisfy the needs of the product 

line in general and the individual products in particular by explicitly admitting a 

set of variation points required to support the spectrum of products within the 

scope. The product line architecture plays a special role among the other core 

assets. It specifies the structure of the products in the product lines and provides 

interface specifications for the components that will be in the core asset base. 

Producing a product line architecture requires the product line scope (discussed 

above); a knowledge of relevant patterns and frameworks; and any available 

inventory of preexisting assets (all discussed below). 



Each core asset should have associated with it an attached process that specifies 

how it will be used in the development of actual products. For example, the 

attached process for a set of product line requirements would give the process to 

follow when expressing the requirements for an individual product. This process 

might simply say: (1) use the product line requirements as the baseline 

requirements, (2) specify the variation requirement for any allowed variation 

point, (3) add any requirements outside the set of specified product line 

requirements, and (4) validate that the variations and extensions can be supported 

by the architecture. The process might also specify the automated tool support for 

accomplishing these steps. These attached processes are themselves core assets 

that get folded into what becomes the production plan for the product line. The 

following figure illustrates this concept of attached processes and how they are 

incorporated into the production plan.  

 

Attached Processes 

There are also core assets at a less technical level—namely, the training specific 

to the product line, the business case for use of a product line approach for this 

particular set of products, the technical management process definitions 

associated with the product line, and the set of identified risks for building 

products in the product line. Although not every core asset will necessarily be 

used in every product in the product line, all will be used in enough of the 

products to make their coordinated development, maintenance, and evolution pay 

off.  



Finally, part of creating the core asset base is defining how that core asset base 

will be updated as the product line evolves, as more resources become available, 

as fielded products are maintained, and as technological changes or market shifts 

affect the product line scope.  

3. Production plan:  
A production plan prescribes how the products are produced from the core assets. 

As noted above, core assets should each have an attached process that defines 

how it will be used in product development. The production plan is essentially a 

set of these attached processes with the necessary glue. It describes the overall 

scheme for how these individual processes can be fitted together to build a 

product. It is, in effect, the reuser's guide to product development within the 

product line. Each product in the product line will vary consistent with predefined 

variation points. How these variation points can be accommodated will vary from 

product line to product line. For example, variation could be achieved by selecting 

from an assortment of components to provide a given feature, by adding or 

deleting components, or by tailoring one or more components via inheritance or 

parameterization. It could also be the case that products are generated 

automatically. The exact vehicle to be used to provide the requisite variation 

among products is described in the production plan. Without the production plan, 

the product builder would not know the linkage among the core assets or how to 

utilize them effectively and within the constraints of the product line. 

To develop a production plan, you need to understand who will be building the 

products—the audience for the production plan. Knowing who the audience is 

will give you a better idea how to format the production plan. Production plans 

can range from a detailed process model to a much more informal guidebook. The 

degree of specificity required in the production plan depends on the background 

of the intended product builders, the structure of the organization, the culture of 

the organization, and the concept of operations for the product line. It will be 

useful to have at least a preliminary definition of the product line organization 

before developing the production plan.  

The production plan should describe how specific tools are to be applied in order 

to use, tailor, and evolve the core assets. The production plan should also 

incorporate any metrics defined to measure organizational improvement as a 

result of the product line (or other process improvement) practices and the plan 

for collecting the data to feed those metrics.  

For more information on production plans, see [Chastek 02b]. 

As will be seen in Product Development, these three outputs are necessary ingredients for 

feeding the product development activity, which turns out products that serve a particular 

customer or market niche.  

The inputs to the core asset development activity are as follows. 



1. Product constraints: What are the commonalities and variations among the 

products that will constitute the product line? What behavioral features do they 

provide? What features do the market and technology forecasts say will be 

beneficial in the future? What commercial, military, or company-specific 

standards apply to the products? What performance limits must they observe? 

With what external systems must they interface? What physical constraints must 

be observed? What quality requirements (such as availability and security) are 

imposed? The core assets must capitalize on the commonalities and accommodate 

envisioned variation with minimal tradeoff to product quality drivers such as 

security, reliability, usability, and so on. These constraints may be derived from a 

set of pre-existing products that will form the basis for the product line, or they 

may be generated anew, or some combination of two. 

2. Production constraints: Must a new product be brought to market in a year, a 

month, or a day? What production capability must be given to engineers in the 

field? Answering these and similar questions will drive decisions about, for 

example, whether to invest in a generator environment or rely on manual coding. 

This in turn will drive decisions about what kind of variability mechanisms to 

provide in the core assets, and what form the overall production plan will take.  

3. Production strategy: The production strategy is the overall approach for 

realizing the core assets and products. Will the product line be built proactively 

(starting with a set of core assets and spinning products off of them), reactively 

(starting with a set of products and generalizing their components to produce the 

product line core assets), or using some combination (see "All Three Together")? 

What will the transfer pricing strategy be—that is, how will the cost of producing 

the generic components be divided among the cost centers for the products? Will 

generic components be produced internally or purchased on the open market? 

Will products be automatically generated from the assets or will they be 

assembled? How will production of core assets be managed? The production 

strategy dictates the genesis of the architecture and associated components and the 

path for their growth.  

4. Inventory of preexisting assets: Legacy systems embody an organization's 

domain expertise and/or define its market presence. The product line architecture, 

or at least pieces of it, may borrow heavily from proven structures of related 

legacy systems. Components may be mined from legacy systems. Such 

components may represent key intellectual property of the organization in 

relevant domains and therefore become prime candidates for components in the 

core asset base. What software and organizational assets are available at the outset 

of the product line effort? Are there libraries, frameworks, algorithms, tools, and 

components that can be utilized? Are there technical management processes, 

funding models, and training resources that can be easily adapted for the product 

line? The inventory includes all potential preexisting assets. Through careful 

analysis, an organization determines what is most appropriate to utilize. But 

preexisting assets are not limited to assets that were built by the product line 

organization. COTS and open-source products, as well as standards, patterns, and 

frameworks, are prime examples of preexisting assets that can be imported from 

outside the organization and used to good advantage. 



Product Development  

The product development activity depends on the three outputs described above—the 

product line scope, the core assets, and the production plan—plus the requirements for 

each individual product. The following figure illustrates these relationships.  

 

Product Development 

Once more, the rotating arrows indicate iteration and intricate relationships. For example, 

the existence and availability of a particular product may well affect the requirements for 

a subsequent product. As another example, building a product that has previously 

unrecognized commonality with another product already in the product line will create 

pressure to update the core assets and provide a basis for exploiting that commonality for 

future products.  

The inputs for the product development activity are as follows:  

• the requirements for a particular product, often expressed as a delta or variation 

from some generic product description contained in the product line scope (such a 

generic description is itself a core asset) or as a delta from the set of product line 

requirements (themselves a core asset). 

• the product line scope, which indicates whether or not the product under 

consideration can be feasibly included in the product line 

• the core assets from which the product is built 

• the production plan, which details how the core assets are to be used to build the 

product 



A software product line is, fundamentally, a set of related products, but how they come 

into existence can vary greatly depending on the core assets, the production plan, and the 

organizational context. From a very simple view, requirements for a product that is in the 

product line scope are received, and the production plan is followed so that the core 

assets can be properly used to develop the product. If the production plan is a more 

informal document, the product builders will need to build a product development plan 

that follows the guidance given. If the production plan is documented as a generic 

process description, the product builders will instantiate the production plan, recognizing 

the variation points being selected for the given product.  

However, the process is rarely, if ever, so linear. The creation of products may have a 

strong feedback effect on the product line scope, the core assets, the production plan, and 

even the requirements for specific products. The ability to turn out a particular member of 

the product line quickly—perhaps a member that was not originally envisioned by the 

people responsible for defining the scope—will in turn affect the product line scope 

definition. Each new product may have similarities with other products that can be 

exploited by creating new core assets. As more products enter the field, efficiencies of 

production may dictate new system generation procedures, causing the production plan to 

be updated.  

Management 

Management plays a critical role in the successful fielding of a product line. Activities 

must be given resources, coordinated, and supervised. Management at both the technical 

(or project) and organizational levels must be strongly committed to the software product 

line effort. That commitment manifests itself in a number of ways that feed the product 

line effort and keep it healthy and vital. Technical management oversees the core asset 

development and to the product development activities by ensuring that the groups who 

build core assets and the groups who build products are engaged in the required activities, 

follow the processes defined for the product line, and collect data sufficient to track 

progress.  

Organizational management must set in place the proper organizational structure that 

makes sense for the enterprise, and must make sure that the organizational units receive 

the right resources (for example, well-trained personnel) in sufficient amounts. We define 

organizational management as the authority that is responsible for the ultimate success or 

failure of the product line effort. Organizational management determines a funding model 

that will ensure the evolution of the core assets and then provides the funds accordingly. 

Organizational management also orchestrates the technical activities in and iterations 

between the essential activities of core asset development and product development. 

Management should ensure that these operations and the communication paths of the 

product line effort are documented in an operational concept. Management mitigates 

those risks at the organizational level that threaten the success of the product line. The 

organization's external interfaces also need careful management. Product lines tend to 

engender different relationships with an organization's customers and suppliers, and these 

new relationships must be introduced, nurtured, and strengthened. One of the most 



important things that management must do is create an adoption plan that describes the 

desired state of the organization (that is, routinely producing products in the product 

lines) and a strategy for achieving that state.  

Both technical and organizational management also contribute to the core asset base by 

making available for reuse those management artifacts (especially schedules and budgets) 

used in developing products in the product line.  

Finally, someone should be designated as the product line manager and that person must 

either act as or find and empower a product line champion. This person must be a strong, 

visionary leader who can keep the organization squarely pointed toward the product line 

goals, especially when the going gets rough in the early stages. Leadership is required for 

software product line success. Management and leadership are not always synonymous.  

All Three Together 

Each of the three activities—core asset development, product development, and 

management—is individually essential, and careful blending of all three is also 

essential—a blend of technology and business practices. Different organizations may take 

different paths through the three activities. The path they take is a manifestation of their 

production strategy, as described in "Core Asset Development." 

Many organizations begin a software product line by developing the core assets first. 

These organizations take a proactive approach [Krueger 01]. They define their product 

line scope to define the set (more often, a space) of systems that will constitute their 

product line. This scope definition provides a kind of mission statement for designing the 

product line architecture, components, and other core assets with the right built-in 

variation points to cover the scope. Producing any product within that scope becomes a 

matter of exercising the variation points of the components and architecture—that is, 

configuring—and then assembling and testing the system. Other organizations begin with 

one or a small number of products they already have and from these generate the product 

line core assets and future products. They take a reactive approach.  

Both of these approaches may be attacked iteratively. For example, a proactive approach 

may begin with the production of only the most important core assets, rather than all of 

them. Early products use those core assets. Subsequent products are built using more core 

assets as they are added to the collection. Eventually, the full core asset base is fielded; 

earlier products may or may not be reengineered to use the full collection. An iterative 

reactive approach works similarly; the core asset based is populated sparsely at first, 

using existing products as the source. More core assets are added as time and resources 

permit. 

The proactive approach has obvious advantages—products come to market extremely 

quickly with a minimum of code-writing. But there are also disadvantages. It requires a 

significant up-front investment to produce the architecture and the components that are 

generic (and reliable) across the entire product space. And it also requires copious up-



front predictive knowledge, something that is not always available. In organizations that 

have long been developing products in a particular application domain, this is not a 

tremendous disadvantage. For a green field effort, where there is no experience or 

existing products, this is an enormous risk.  

The reactive approach has the advantage of a much lower cost of entry to software 

product lines because the core asset base is not built up front. However, for the product 

line to be successful, the architecture and other core assets must be robust, extensible, and 

appropriate to future product line needs. If the core assets are not built beyond the ability 

to satisfy the specific set of products already in the works, extending them for future 

products may prove too costly.  

Product Line Practice Areas  

Product Line Essential Activities of this framework introduced three essential activities 

that are involved in developing a software product line. These are (1) core asset 

development, (2) product development, and (3) management. This section defines in 

more detail what an organization must do to perform those broad essential activities. We 

do this by defining practice areas. A practice area is a body of work or a collection of 

activities that an organization must master to successfully carry out the essential work of 

a product line. Practice areas help to make the essential activities more achievable by 

defining activities that are smaller and more tractable than a broad imperative such as 

"Develop core assets." Practice areas provide starting points from which organizations 

can make (and measure) progress in adopting a product line approach for software.  

So, to achieve a software product line you must carry out the three essential activities. To 

be able to carry out the essential activities you must master the practice areas relevant to 

each. By "mastering," we mean an ability to achieve repeatable, not just one-time, 

success with the work.  

Almost all of the practice areas describe activities that are essential for any successful 

software development, not just software product lines. However, they all either take on 

particular significance or must be carried out in a unique way in a product line context. 

Those aspects that are specifically relevant to software product lines, as opposed to 

single-system development, will be emphasized.  

Describing the Practice Areas  

For each practice area we present the following information: 

• An introductory overview of the practice area that summarizes what it's about. 

You will not find a definitive discourse on the practice area here, since in most 

cases there is overlap with what can be found in traditional software engineering 

and management reference books. We provide a few basic references if you need 

a refresher.  



• Those aspects of the practice area that apply especially to a product line, as 

opposed to a single system. Here you will learn in what ways traditional software 

and management practice areas need to be refocused or tailored to support a 

product line approach. 

• How the practice area is applied to core asset development and product 

development, respectively. We separate these two essential activities; although in 

most cases a given practice area applies to both of these broad areas, the lens that 

you look through to focus changes when you are building products versus 

developing core assets.  

• A description of any specific practices that are known to apply to the practice 

area. A specific practice describes a particular way of accomplishing the work 

associated with a practice area. Specific practices are not meant to be end-to-end 

methodological solutions to carrying out a practice area but approaches to the 

problem that have been used in practice to build product lines. Whether or not a 

specific practice will work for your organization depends on context. 

• Known risks associated with the practice area. These are ways in which a practice 

area can go wrong, to the detriment of the overall product line effort. Our 

understanding of these risks is borne out of the pitfalls of others in their product 

line efforts.  

• A list of references for further reading, to support your investigation in areas 

where you desire more depth.  

There are other kinds of information associated with each practice area, although these 

are not called out in the description. When planning to carry out the practice area, be sure 

to keep the following in mind: 

• For each practice area, make a work plan for carrying it out. The work plan 

should specify the plan owner, specific tasks, who is responsible for doing them, 

what resources those people will be given, and when the results are due. More 

information about planning for product lines can be found in the "Technical 

Planning" and "Organizational Planning" practice areas. 

• For each practice area, define metrics associated with tracking its completion and 

measuring its success. These metrics will help an organization identify where the 

practice areas are (or are not) being executed in a way that is meeting the 

organization's goals. More information about planning for measurement can be 

found in the "Data Collection, Metrics, and Tracking" practice area. 

• Many practice areas produce tangible artifacts. For each practice area that does so, 

make a plan for keeping its produced artifacts up to date and identify the set of 

stakeholders who hold a vested interest in the artifacts produced. Collect 

organizational plans for artifact evolution and sustainment, and stakeholder 

definitions, in your product line's operational concept, which is discussed in the 

"Operations" practice area.  

• Many practice areas lead to the creation of core assets of some sort. For those that 

do, define and document an attached process that tells how the core assets are 

used (modified, instantiated, and so on) to build products. These attached 

processes together form the production plan for the product line. The "Process 



Definition" practice area describes the essential ingredients for defining these 

(and other) processes. The "Operations" and "Architecture Definition" practice 

areas describe documents for containing some of them. 

Organizing the Practice Areas  

Since there are so many practice areas, we need a way of organizing them for easier 

access and reference. We divide them loosely into three categories:  

1. Software engineering practice areas are those necessary to apply the appropriate 
technology to create and evolve both core assets and products.  

2. Technical management practice areas are those management practices necessary 
to engineer the creation and evolution of the core assets and the products.  

3. Organizational management practice areas are those necessary for the 
orchestration of the entire software product line effort. 

Each of these categories appeals to a different body of knowledge and requires a different 

skill set for the people needed to carry them out. The categories represent disciplines 

rather than job titles.  

There is no way to divide cleanly into practice areas the knowledge necessary to achieve 

a software product line. Some overlap is inevitable. We have chosen what we hope to be 

a reasonable scheme and have identified practice area overlap where possible.  

The description of practice areas that follows is an encyclopedia; neither the ordering nor 

the categorization constitutes a method or an order for application. In other works we 

provide product line practice patterns that show how to put the practice areas into play for 

a particular organization's context and goals [Clements 01a].  

Software Engineering Practice Areas 

Software engineering practice areas are those practice areas that are necessary for 

application of the appropriate technology to the creation and evolution of both core assets 

and products. They are carried out in the technical activities represented by the top two 

circles in the follow figure.  



 

Software Engineering Practice Areas and the Essential Product Line Activities 

In alphabetical order, they are:  

• Architecture Definition  

• Architecture Evaluation  

• Component Development  

• COTS Utilization  

• Mining Existing Assets  

• Requirements Engineering  

• Software System Integration  

• Testing  

• Understanding Relevant Domains  

All of these practice areas should sound familiar, because all are part of every well-

engineered software system. But all take on special meaning when the software is a 

product line, as we will see. How do they relate to each other in a software product line 

context? The following figure sketches the story.  



 

Relationships among Software Engineering Practice Areas
1
 

Domain understanding feeds requirements, which drive an architecture, which specifies 

components. Components may be made in-house, bought on the open market, mined 

from legacy assets, or commissioned under contract. This choice depends on the 

availability of in-house talent and resources, open-market components, an exploitable 

legacy base, and able contractors. The existence (or nonexistence) of these things can 

affect the requirements and architecture for the product line. Once available, the 

components must be integrated, and they and the system must be tested. This is a quick 

trip through an iterative growth cycle, and it oversimplifies the story shamelessly but 

shows a good approximation of how the software engineering practice areas come into 

play.  

We begin, fittingly, with architecture definition. Perhaps more than any other core asset, 

the architecture will determine how well an organization can field products that are built 

efficiently from a shared repository of core assets.  

 

1. Items in brackets ([ ]) refer to practice areas other than those in the software engineering category. 

Architecture Definition  



This practice area describes the activities that must be performed to define a software 

architecture. By software architecture, we mean the following:  

The software architecture of a program or computing system is the structure or 

structures of the system, which comprise software elements, the externally visible 

properties of those elements, and the relationships among them. "Externally visible" 

properties, we are referring to those assumptions other elements can make of an element, 

such as its provided services, performance characteristics, fault handling, shared 

resource usage, and so on [Bass 03]. 

By making "externally visible properties" of elements
1
 part of the definition, we 

intentionally and explicitly include elements' interfaces and behaviors as part of the 

architecture. We will return to this point later. By contrast, design decisions or 

implementation choices that do not have system-wide ramifications or visibility are not 

architectural. 

Architecture is key to the success of any software project, not just a software product 

line. Architecture is the first design artifact that begins to place requirements into a 

solution space. Quality attributes of a system (such as performance, modifiability, and 

availability) are in large part permitted or precluded by its architecture—if the 

architecture is not suitable from the beginning for these qualities, don't expect to achieve 

them by some miracle later. The architecture determines the structure and management of 

the development project as well as the resulting system, since teams are formed and 

resources allocated around architectural elements. For anyone seeking to learn how the 

system works, the architecture is the place where understanding begins. The right 

architecture is absolutely essential for smooth sailing. The wrong one is a recipe for 

disaster.  

Architectural requirements: For an architecture to be successful, its constraints must be 

known and articulated. And contrary to standard software engineering waterfall models, 

an architecture's constraints go far beyond implementing the required behavior of the 

system that is specified in a requirements document [Clements 01a, p. 57]. Other 

architectural drivers that a seasoned architect knows to take into account include: 

• the quality attributes (as mentioned above) that are required for each product that 

will be built from the architecture 

• whether or not the system will have to interact with other systems 

• the business goals that the developing organization has for the system. These 

might include ambitions to use the architecture as the basis for other systems (or 

even other software product lines). Or perhaps the organization wishes to develop 

a particular competence in an area such as Web-based database access. 

Consequently, the architecture will be strongly influenced by that desire. 

• best sources for components. A software architecture will, when it is completed, 

call for a set of components to be defined, implemented, and integrated. Those 

components may be implemented in-house (see the "Component Development" 

practice area), purchased from the commercial marketplace (see the "COTS 



Utilization" practice area), contracted to third-party developers (see the 

"Developing an Acquisition Strategy" practice area), or excavated from the 

organization's own legacy vaults (see the "Mining Existing Assets" practice area). 

The architecture is indifferent as to the source. However, the availability of 

preexisting components (commercial, third-party, or legacy) may influence the 

architecture considerably and cause the architect to carve out a place in the 

architecture for a preexisting component to fit, if doing so will save time or 

money or play into the organization's long-term strategies. 

Component interfaces: As we said in the opening of this section, architecture includes 

the interfaces of its components. It is therefore incumbent on the architect to specify 

those interfaces (or, if the component is developed externally, ensure that its interface is 

adequately specified by others). By "interface" we mean something far more complete 

than the simple functional signatures one finds in header files. Signatures simply name 

the programs and specify the numbers and types of their parameters, but they tell nothing 

about the semantics of the operations, the resources consumed, the exceptions raised, or 

the externally visible behavior. As Parnas wrote in 1971, an interface consists of the set 

of assumptions that users of the component may safely make about it—nothing more, but 

nothing less [Parnas 72]. Approaches for specifying component interfaces are discussed 

in "Specific Practices." 

Connecting components: Applications are constructed by connecting together 

components to enable communication and coordination. In simple systems that run on a 

single processor, the venerable procedure call is the oldest and most widely used 

mechanism for component interaction. In modern distributed systems, however, 

something more sophisticated is desirable. There are several competing technologies, 

discussed below, for providing these connections as well as other infrastructure services. 

Among the services provided by the infrastructures are remote procedure calls (allowing 

components to be deployed on different processors transparently), communication 

protocols, object persistence and the creation of standard methods, and "naming services" 

that allow one component to find another via the component's registered name. These 

infrastructures are purchased as commercial packages; they are components themselves 

that facilitate connection among other components. These infrastructure packages are 

called middleware and, like patterns, represent another class of already solved problems 

(highly functional component interactions for distributed object-based systems) that the 

architect need not reinvent. At the time of this writing, the leading contenders in the race 

for middleware market dominance are the Object Management Group's CORBA [OMG 

96]; Sun Microsystems' Java 2 Enterprise Edition (J2EE), including Enterprise Java 

Beans (EJB); and Microsoft's .NET. 

Architecture documentation and views: Documenting the architecture is essential for it 

to achieve its effectiveness. Here, architectural views come into play. A view a 

representation of a set of system elements and the relationships among them [Clements 

02a]. A view can be thought of as a projection of the architecture that includes certain 

kinds of information and suppresses other kinds. For example, a module decomposition 

view will show how the software for the system is hierarchically decomposed into 



smaller units of implementation. A communicating processes view will show the 

processes in the software and how they communicate or synchronize with each other, but 

it will not show how the software is divided into layers (if indeed it is). The layered view 

will show this, but will not show the processes. A deployment view shows how software 

is assigned to hardware elements in the system. There are many views of an architecture; 

choosing which ones to document is a matter of what information you wish to convey. 

Each view has a particular usefulness to one or more segments of the stakeholder 

community [IEEE 2000] and should be chosen and engineered with that in mind. 

Aspects Peculiar to Product Lines 

All architectures are abstractions that admit a plurality of instances; a great source of their 

conceptual value is, after all, the fact that they allow us to concentrate on design while 

admitting a number of implementations. But a product line architecture goes beyond this 

simple dichotomy between design and code; it is concerned identifying and providing 

mechanisms to achieve a set of explicitly allowed variations (because when exercised, 

these become products), whereas with a conventional architecture almost any instance 

will do as long as the (single) system's behavioral and quality goals are met. But products 

in a software product line exist simultaneously and may vary from each other in terms of 

their behavior, quality attributes, platform, network, physical configuration, middleware, 

scale factors, and a multitude of other ways.  

In a conventional architecture, the mechanism for achieving different instances almost 

always comes down to modifying the code. But in a software product line, support for 

variation can take many forms (and be exercised at many times [Clements 01a, p. 64]). 

Mechanisms to achieve variation are discussed under "Specific Practices."  

Integration may assume a greater role for software product lines than for one-off systems 

simply because of the number of times it's performed. A product line with a large number 

of products and upgrades requires a smooth and easy process for each product. Therefore, 

it pays to select a variation mechanism that allows for reliable and efficient integration 

when new products are turned out. This means some degree of automation. For example, 

if the variation mechanism chosen for the architecture is component selection and 

deselection, you will want an integration tool that carries out your wishes by selecting the 

right components and feeding them to the compiler or code generator. If the variation 

mechanism is parameterization or conditional compilation, you will want an integration 

tool that checks the parameter values for consistency and compatibility, then feeds those 

values to the compilation step. Hence, the variation mechanism chosen for the 

architecture will go hand-in-hand with the integration approach (see the "Software 

System Integration" practice area).  

For many other system qualities, such as performance, availability, functionality, 

usability, and testability, there are no major peculiarities that distinguish architecture for 

product lines relative to one-of-a-kind systems.  



There must be documentation for the product line architecture as it resides in the core 

asset base and for each product's architecture (to the extent that it varies from the product 

line architecture). For a software product line, the views will need to show the variations 

that are possible. A second documentation obligation is to describe the architecture's 

attached process-that is, the part of the production plan that deals with the architecture. It 

should describe the architecture's variation points, how to exercise them, and a rationale 

for the variation. In practice, the attached process for the architecture is often bundled 

with the attached processes for requirements engineering, component development, 

software integration, and testing into an operational document that serves as a product 

builder's guide, discussed in more detail under "Specific Practices."  

Application to Core Asset Development 

The product line architecture is an early and prominent member in the collection of core 

assets. The architecture is expected to persist over the life of the product line and to 

change relatively little and relatively slowly over time. The architecture defines the set of 

software components (and hence their supporting assets such as documentation and test 

artifacts) that populate the core asset base. The architecture also spawns its attached 

process, which is itself an important core asset for sustaining the product line. 

Application to Product Development 

Once it has been placed in the product line core asset base, the architecture is used to 

create instance architectures for each new product according to its attached process. If 

product builders discover a variation point or a needed mode of variation that is not 

permitted by the architecture, it should be brought to the architect's attention; if the 

variation is within scope (or deemed desirable to add to the scope), the architecture may 

be enhanced to accommodate it. The "Operations" practice area deals with setting up this 

feedback loop in the organization. 

Specific Practices 

Architecture definition and architecture-based development: As the field of software 

architecture has grown and matured, methods of creating, defining, and using architecture 

have proliferated. Many specific practices related to architecture definition are defined in 

widely available works [Kruchten 98, Jacobson 97, Hofmeister 00, Bachmann 00]. The 

Rational Unified Process (RUP) is the most widely used method for object-oriented 

systems. An explanation of RUP is beyond the scope of this framework, but a plethora of 

resources is available elsewhere; for example, at 

www.rational.com/products/rup/index.jsp. 

Attribute-Driven Design (ADD): The SEI's Attribute-Driven Design (ADD) method 

[SEI ADD] is a method for designing the software architecture of a product line to ensure 

that the resulting products have the desired qualities. ADD is a recursive decomposition 

method that starts by gathering architectural drivers that are a combination of the quality, 



functional, and business requirements that "shape" the architecture.. The steps at each 

stage of the decomposition are:  

1. Choose architectural drivers. The architectural drivers are the combination of 
quality, business, and functional goals that "shape" the architecture.  

2. Choose patterns and children component types to satisfy drivers. There are known 
patterns to achieve various qualities. Choose the solutions that are most 

appropriate for the high priority qualities.  

3. Instantiate children design elements and allocate functionality from use cases 
using multiple views. The functionality to be achieved by the product family is 

allocated to the component types.  

4. Identify commonalities across component instances. These commonalities are 
what define the product line, as opposed to individual products.  

5. Validate that quality and functional requirements and any constraints have not 
been precluded from being satisfied by the decomposition.  

6. Refine use cases and quality scenarios as constraints to children design elements. 
Because ADD is a decomposition method, the inputs for the next stage of 

decomposition must be prepared.  

Architectural patterns: Architectures are seldom built from scratch but rather evolve 

from solutions previously applied to similar problems. Architectural patterns represent a 

current approach to reusing architectural design solutions. An architectural pattern
2
 is a 

description of component types and a pattern of their runtime control and/or data transfer 

[Shaw 96]. Architectural patterns are becoming a de facto design language for software 

architectures. People speak of pipe-and-filter, n-tier, client-server style, or an agent-based 

architectures, and these phrases immediately convey complex and sophisticated design 

information. Architectural pattern catalogues exist that explain the properties of a 

particular pattern, including how well-suited each one is for achieving specific quality 

attributes such as security or high performance. Using a previously catalogued pattern 

shortens the architecture definition process, because patterns come with pedigrees: what 

applications they work well for, what their performance properties are, where they can 

easily accommodate variation points, and so forth. For example, the layered architectural 

pattern is well known for imbuing a system with portability, the ability to move the 

software to a new operating environment with minimal change. Portability is a desirable 

characteristic for a product line architecture if different products are expected to run on 

different platforms, or if the entire product line may migrate to a new platform one day. 

Thus, a product line architect designing for portability may start out by considering a 

layered architecture. Product line architects should be familiar with well-known 

architectural patterns as well as patterns (well known or not) used in systems similar to 

the ones they are building. 

Quality Attribute Workshops: Prerequisite to designing an architecture is 

understanding the behavioral and quality attribute requirements that it must satisfy. One 

way to elicit these requirements from the architecture's stakeholders is with a Quality 

Attribute Workshop (QAW) [SEI QAW]. QAWs provide a method for identifying a 

system's architecture critical quality attributes, such as availability, performance, security, 



interoperability, and modifiability. In the QAW, an external team facilitates meetings 

between stakeholders during which scenarios representing the quality attribute 

requirements are generated, prioritized, and refined (i.e., adding additional details such as 

the participants and assets involved, the sequence of activities, and questions about 

quality attributes requirements). The refined scenarios can be used in different ways, for 

example as seed scenarios for an evaluation exercise or as test cases in an acquisition 

effort.  

Aspect-oriented programming (AOP): AOP is an approach to program development 

that makes it possible to modularize systemic properties of a program such as 

synchronization, error handling, security, persistence, resource sharing, distribution, 

memory management, replication, and the like. Rather than staying well localized within 

a class, these concerns tend to crosscut the system's class and module structure. An 

"aspect" is a special kind of module that implements one of these specific properties of a 

program. As that property varies, the effects "ripple" through the entire program 

automatically. Like object-oriented programming, AOP works by allowing the 

programmer to cleanly express certain structural properties of the program, and then take 

advantage of that structure in powerful ways. In object-oriented programming, the 

structure is rooted in notions of hierarchies, inheritance, and specialization. In AOP, the 

structure is rooted in notions of crosscutting. As an example, an AOP program might 

define "the public methods of a given package" as a crosscutting structure, and then say 

that all of those methods should do a certain kind of error handling. This would be coded 

in a few lines of well-modularized code. AOP is an architectural approach because it 

provides a means of separating concerns that would otherwise affect a multitude of 

components that were constructed to separate a different, orthogonal set of concerns. The 

AOP work at Xerox PARC is described on its Web page [Xerox 99]. 

Product builder's guide: A product line architecture is instantiated as a product 

architecture each time a product is turned out. The product architecture may be the same 

as the product line architecture, or it may be the result of preplanned tailoring or binding. 

For example, install four servers, 52 client workstations, and two databases; configure the 

network routers accordingly; use the high-speed low-resolution version of the graphics 

component, and turn encryption in the message generator off. The steps that product 

developers must take to create this product architecture constitute its attached process and 

should of course be documented as such. However, many organizations collect the 

attached processes for requirements engineering, architecture definition, component 

development, software integration, and testing into a single document that forms a 

specialized subset of the overall production plan. One organization we have worked with 

adopted the following organization for their product builder's guide: 

• Introduction: goals and purpose of the document; intended audience; basic 

common assumptions; applicable development standards 

• Sources of other information: references to documents containing the product 

line architecture definition (which is maintained separately from the product 

builder's guide because its stakeholders include more than product builders) and 

associated information such as terms and terminology, the architecture's goals, 



architecture training materials, development standards, and configuration 

management procedures and policies 

• Basic concepts: What is a variation point? What mechanisms for realizing 

variation points have been used in this architecture? What is the relation between 

the product line architecture and the architecture for a particular product? What is 

an architecture layer, and how is the concept used? What is a service (in this case, 

the basic unit of reuse provided by the architecture)? And so forth. 

• Service component catalogue: This organization's product line architecture 

contains some preintegrated units of functionality called service components that 

product builders can use to construct products. This section catalogues those 

service components, defines their interfaces, and explains how service 

components related to each other. 

• Building an application: This section gives code templates and examples for 

building applications. It progresses incrementally. First, how do you build the 

most trivial application possible, one that perhaps does nothing but start a process 

running? Then, how do you build the most trivial application that actually does 

something observable, the domain's equivalent of the ubiquitous "Hello, world!" 

program that was the first computer program many of us ever wrote? Then, how 

do you build an application that contains the functions common to many of the 

products in the product line? Then, how do you build an application that runs on a 

single processor? Distributed across multiple processors? And so forth. The 

examples show how to instantiate the architecture's variation points at each step 

along the way. 

• Performance engineering: This section presented guidelines on how to build a 

product when performance was a concern. 

Mechanisms for achieving variability in a product line architecture (1): Mikael 

Svahnberg and Jan Bosch have crisply staked out the landscape of architecture-based 

support for variability in product lines [Svahnberg 00]. Their list includes the following 

mechanisms: 

• Inheritance: in object-oriented systems, used when a method needs to be 

implemented differently (or perhaps extended) for each product in the product 

line 

• Extensions and extension points: used when parts of a component can be 

augmented with additional behavior or functionality 

• Parameterization: used when a component's behavior can be characterized 

abstractly by a placeholder that is then defined at build time. Macros and 

templates are forms of parameterization. 

• Configuration and module interconnection languages: used to define the 

build-time structure of a system, including selecting (or deselecting) whole 

components 

• Generation: used when there is a higher-level language that can be used to define 

a component's desired properties 



• Compile-time selection of different implementations: The variable #ifdefs can 

be used when variability in a component can be realized by choosing different 

implementations. 

Code-based mechanisms used to achieve variability within individual components 

will be discussed further in the "Component Development" practice area. 

Mechanisms for achieving variability in a product line architecture (2): Philips 

Research Laboratories uses service component frameworks to achieve diversity in their 

product line of medical imaging systems [Wijnstra 00]. Goals for that family include 

extensibility over time and support for different functions at the same time. A framework 

is a skeleton of an application that can be customized to yield a product. White-box 

frameworks rely heavily on inheritance and dynamic binding; knowledge of the 

framework's internals is necessary in order to use it. Black-box frameworks define 

interfaces for components that can be plugged in via composition tools. A service 

component framework is a type of black-box framework, supporting a variable number of 

plug-in components. Each plug-in is a container for one or more services, which provide 

the necessary functionality. All services support the framework's defined interface but 

exhibit different behaviors. Clients use the functionality provided by the component 

framework and the services as a whole; the assemblage is itself a component in the 

products' architecture. Conversely, units in the product line architecture may consist of or 

contain one or more component frameworks. 

Planning for architectural variation: Nokia has used a "requirements definition hierarchy" 

as a way to understand what variations are important to particular products [Kuusela 00]. 

The hierarchy consists of design objectives (goals or wishes) and design decisions 

(solutions adopted to meet the corresponding goals). For example, a design objective 

might be "System shall be highly reliable." One way to meet that objective is to decree 

that the "System shall be a duplicated system." This in turn might mean that the "System 

shall have duplicated hardware" and/or the "System duplicates communication links." 

Another way to meet the reliability objective is to decree that the "System shall have self-

diagnostic capacity," which can be met in several ways. Each box in the hierarchy is 

tagged with a vector, each element of which corresponds to a product in the product line. 

The value of an element is the priority or importance given to that objective, or 

endorsement of that design decision, by the particular product. For example, if an overall 

goal for a product line is high reliability, being a duplicated system might be very 

important to Product 2 and Product 3, but not at all important to Product 1, which will be 

a single-chip system.  

The requirements definition hierarchy is a tool that the architect can use as a bridge 

between the product line's scope (see the "Scoping" practice area), which will tell what 

variations the architecture will have to support, and the architecture, which may support 

the variation in a number of ways. It is also useful to see how widely used a new feature 

or variation will be: should it be incorporated into the architecture for many products to 

use, or is it a one-of-a-kind requirement best left to the devices of the product that 



spawned it? The hierarchy is a way for the architect to capture the rationale behind such 

decisions. 

Architecture documentation: Recently more attention has been paid in the software 

engineering community about how to write down a software architecture so that others 

can understand it, use it to build systems, and sustain it. The Rational's Unified Modeling 

Language (UML) is the most-often used formal notation for software architectures, 

although it lacks many architecture-centric concepts. The Software Engineering Institute 

recently published the "views and beyond" approach to documentation [Clements 02a], 

which holds that documenting a software architecture is a matter of choosing the relevant 

views based on projected stakeholder needs, documenting those, and then documenting 

the information that applies across all of the views. Examples of cross-view information 

include how the views relate to each other, and stakeholder-centric roadmaps through the 

documentation that let people with different interests find information relevant to them 

quickly and efficiently. The approach includes a three-step method for choosing the best 

views to engineer and document for any architecture, and the overall approach produces a 

result compliant with the IEEE-recommended best practice on documenting architectures 

of software-intensive systems [IEEE 2000]. 

Specifying component interfaces: Interfaces are often specified using a contractual 

approach. Contracts state pre- and postconditions for each service and define invariants 

that express constraints about the interactions of services within the component. The 

contract approach is static and does not address the dynamic aspects of a component-

based system or even the dynamic aspects of a single component's behavior. Additional 

techniques such as state machines [Harel 98] and interval temporal logic [Moszkowski 

86] can be used to specify constraints on the component that deal with the ordering of 

events and the timing between events. For example, a service may create a thread and 

assign it work to do that will not be completed within the execution window of the 

service. A postcondition for that service would include the logical clause for "eventually 

this work is accomplished." 

A complete contract should include information about what will be both provided and 

required. The typical component interface specification describes the services that a 

component provides. To fully document a component so that it can be integrated easily 

with other components, the specification should also document the resources that the 

component requires. In addition to making it easy to determine what must be available 

for the component to be integrated successfully, this documentation provides a basis for 

determining whether there are possible conflicts between the resources needed for the set 

of components comprising the application. 

A component's interface provides only a specification of how individual services respond 

when invoked. As components are integrated, additional information is needed. The 

interactions between two components needed to achieve a specific objective can be 

described as a protocol. A protocol groups together a set of messages from both 

components and specifies the order in which they are to occur. 



Each component exhibits a number of externally visible attributes that are important to its 

use but are often omitted (incorrectly) from its interface specification. Performance 

(throughput) and reliability are two such attributes. The standard technique for 

documenting the performance of a component is the computational complexity of the 

dominant algorithms. Although this technique is platform-independent, it is difficult to 

use in reasoning about satisfying requirements in real-time systems, because it fails to 

yield an actual time measure. Worse, it uses information that will change when 

algorithms (presumably encapsulated within the component) change. A better approach is 

to document performance bounds, setting an upper bound on time consumed. The 

documentation remains true when the software is ported to a platform at least as fast as 

the current one-a safe assumption in today's environment. Cases in which the stated 

bounds are not fast enough can be resolved on a case-by-case basis. If the product can in 

fact meet the more stringent requirement on that product's platform, that fact can be 

revealed. If it cannot, either remedial action must be taken or the requirement must be 

relaxed. 

Practice Risks 

The biggest risk associated with this practice area is failing to have a suitable product line 

architecture. This will result in:  

• components that do not fit together or interact properly  

• products that do not meet their behavioral, performance, or other quality goals  

• products that should be in scope, but which are unable to be produced from the 

core assets at hand  

• a tedious and ad hoc product-building process  

These in turn will lead to extensive and time-consuming rework, poor system quality, and 

inability to realize the product line's full benefits. If product teams do not find the 

architecture to be suitable for their products and easy to understand and use, they may 

bypass it, resulting in the eventual degradation of the entire product line concept. 

Unsuitable architectures could result from: 

• Lack of a skilled architect: A product line architect must be skilled in current 

and promising technologies, the nuances of the application domains at hand, 

modern design techniques and tool support, and professional practices such as the 

use of architectural patterns. The architect must know all of the sources of 

requirements and constraints on the architecture, including those (such as 

organizational goals) not traditionally specified in a requirements specification 

[Clements 01a, p. 58]. 

• Lack of sound input: The product line scope and production strategy must be 

well defined and stable. The requirements for products must be articulated clearly 

and completely enough so that architectural decisions may be reliably based on 

them. Forthcoming technology, which the architecture must be poised to accept, 

must be forecast accurately. Relevant domains must be understood so that their 



architectural lessons are learned. To the extent to which the architect is compelled 

to make guesses, the architecture poses a risk.  

• Poor communication: The best architecture is useless if it is documented and 

communicated in ways that its consumers-the product builders-cannot understand. 

An architecture whose documentation is chronically out of date is effectively the 

same as an undocumented architecture. There must be clear and open two-way 

communication channels between the architect and the organizations using the 

architecture.  

• Lack of supportive management and culture: There must be management 

support for the creation and use of the product line architecture, especially if the 

architecture group is separate from the product development group. Failing this, 

product groups may "go renegade" and make unilateral changes to the 

architecture, or decline to use it at all, when turning out their systems. There are 

additional risks if management does not support the strong integration of system 

and software engineering.  

• Architecture in a vacuum: The exploration and definition of software 

architecture cannot take place in a vacuum separate from system architecture. 

• Poor tools: There are precious few tools for this practice area, especially those 

that help with designing, specifying, or exercising an architecture's variability 

mechanisms–a fundamental part of a product line architecture. Tools to test the 

compliance of products to an architecture are virtually nonexistent.  

• Poor timing: Declaring an architecture ready for production too early leads to 

stagnation, while declaring it too late may allow unwanted variation. Discretion is 

needed when deciding when and how firmly to freeze the architecture. The time 

required to fully develop the architecture also may be too long. If product 

development is curtailed while the product line architecture is being completed, 

developers may lose patience, management may lose resolve, and salespeople 

may lose market share. 

Unsuitable architectures are characterized by: 

• Inappropriate parameterization: Overparameterization can make a system 

unwieldy and difficult to understand. Underparameterization can eliminate some 

of the necessary customizations of the system. The early binding of parameters 

can also preclude easy customization, while the late binding of parameters can 

lead to inefficiencies.  

• Inadequate specifications: Components may not integrate properly if their 

specifications are sketchy or limited to static descriptions of individual services.  

• Decomposition flaws: A component may not provide the functionality needed to 

implement the system correctly if there is not an appropriate decomposition of the 

required system functionality.  

• Wrong level of specificity: A component may not be reusable if the component 

is too specific or too general. If the component is made so general that it 

encompasses multiple domain concepts, the component may require complex 

configuration information to make it fit a specific situation and therefore be 

inherently difficult to reuse. The excessive generality may also tax performance 



and other quality attributes to an unacceptable point. If the component is too 

specific, there will be few situations in which it is the correct choice.  

• Excessive intercomponent dependencies: A component may become less 

reusable if it has excessive dependencies on other components.  

Further Reading 

General software architecture:  

[Bass 03] emphasizes architecture's role in system development and provides several case 

studies of architectures used to solve real problems. One is an architecture for the 

CelsiusTech ship systems product line. It also includes an extensive discussion of 

architectural views.  

[Shaw 96] provides an excellent treatment of architectural patterns (called styles there) 

and their ramifications for system building.  

[Hofmeister 00] emphasizes views and structures, and provides a solid treatment of 

building a system from an architecture and its views.  

[SEI ATA] provides a wide variety of software architecture resources and links.  

Product line architecture:  

[Bosch 00a] brings a dedicated product line focus to the mix, and is required reading for 

the product line practitioner.  

Software architecture from a strictly object-oriented point of view:  

[Booch 94] offers a good foundation.  

[Jacobson 97] devotes an entire section to architectural patterns for object-oriented 

systems designed with strategic reuse in mind.  

[Kruchten 98] is a good reference for the preeminent development process in the object-

oriented realm.  

[Buschmann 96] raises the design pattern phenomenon to the arena of software 

architecture and is a good staple of any architect's toolbox.  

[Smith 01] contains three chapters of principles and guidance for architecting systems 

(object-oriented or not) in which performance is a concern.  

Problem solving:  



[Jackson 00] classifies, analyzes, and structures a set of recurring software development 

problems, organized according to how the software will interact with the outside world.  

Architecture Documentation:  

[Clements 02a] explains the views-and-beyond approach to architecture documentation.  

UML:  

(http://www.rational.com/uml) is the starting point.  

 

1. An element is a unit of software that has identity at either implementation time or runtime. We use the term component to refer to a unit of 

software that serves as a core asset in the product line and that must be developed or acquired as a unit. 

2. The term used in [Shaw 96] was architectural style, which is synonymous with architectural pattern. 

Architecture Evaluation 

"Marry your architecture in haste and you can repent in leisure." So admonished Barry 

Boehm in a recent lecture [Boehm 00]. The architecture of a system represents a coherent 

set of the earliest design decisions, which are the most difficult to change and the most 

critical to get right. It is the first design artifact that addresses the quality goals of the 

system such as security, reliability, usability, modifiability, and real-time performance. 

The architecture describes the system structure and serves as a common communication 

vehicle among the system stakeholders: developers, managers, maintainers, users, 

customers, testers, marketers, and anyone else who has a vested interest in the 

development or use of the system.  

With the advent of repeatable, cost-effective architecture evaluation methods, it is now 

feasible to make architecture evaluation a standard part of the development cycle. And 

because so much rides on the architecture, and because it is available early in the life 

cycle, it makes utmost sense to evaluate the architecture early when there is still time for 

midcourse correction. In any nontrivial project, there are competing requirements and 

architectural decisions that must be made to resolve them. It is best to air and evaluate 

those decisions and to document the basis for making them before the decisions are cast 

into code.  

Architecture evaluation is a form of artifact validation, just as software testing is a form 

of code validation. In the "Testing" practice area, we will discuss validation of artifacts in 

general—and in fact, prescribe a validation step for all of the product line's core assets—

but the architecture for the product line is so foundational that we give its validation its 

own special practice area.  

The evaluation can be done at a variety of stages during the design process. For example, 

the evaluation can occur when the architecture is still on the drawing board and candidate 

structures are being weighed. The evaluation can also be done later, after preliminary 



architectural decisions have been made, but before detailed design has begun. The 

evaluation can even be done after the entire system has been built (such as in the case of a 

reengineering or mining operation). The outputs will depend on the stage at which the 

evaluation is performed. Enough design decisions must have been made so that the 

achievement of the requirements and quality-attribute goals can be analyzed. The more 

architectural decisions that have been made, the more precise the evaluation can be. On 

the other hand, the more decisions that have been made, the more difficult it is to change 

them. 

An organization's business goals for a system lead to particular behavioral requirements 

and quality-attribute goals. The architecture is evaluated with respect to those 

requirements and goals. Therefore, before an evaluation can proceed, the behavioral and 

quality-attribute goals against which an architecture is to be evaluated must be made 

explicit. These quality-attribute goals support the business goals. For example, if a 

business goal is that the system should be long-lived, modifiability becomes an important 

quality-attribute goal. 

Quality-attribute goals, by themselves, are not definitive enough either for design or for 

evaluation. They must be made more concrete. Using modifiability as an example, if a 

product line can be adapted easily to have different user interfaces, but is dependent on a 

particular operating system, is it modifiable? The answer is yes with respect to the user 

interface, but no with respect to porting to a new operating system. Whether this 

architecture is suitably modifiable or not depends on what modifications to the product 

line are expected over its lifetime. That is, the abstract quality goal of modifiability must 

be made concrete: modifiable with respect to what kinds of changes, exactly? The same 

is true for other attributes. The evaluation method that you use must include a way to 

concretize the quality and behavioral goals for the architecture being evaluated. 

Aspects Peculiar to Product Lines 

In a product line, architecture assumes a dual role. There is the architecture for the 

product line as a whole, and there are architectures for each of the products. The latter are 

produced from the former by exercising the built-in variation mechanisms to achieve 

instances. Both should be evaluated. The product line architecture should be evaluated for 

its robustness and generality, to make sure it can serve as the basis for products in the 

product line's envisioned scope. Instance architectures should be evaluated to make sure 

they meet the specific behavioral and quality requirements of the product at hand. In 

practice, the extent to which these two evaluations are separate exercises depends on the 

extent to which the product architecture differs from the product line architecture. 

Evaluating both the product line and product architectures is a prudent, low-cost, risk-

reduction method.  

Some of the business goals will be related to the fact that the architecture is for a product 

line. For example, the architecture will almost certainly have built-in variation points that 

can be exercised to derive specific products having different attributes. The evaluation 

will have to focus on the variation points to make sure they are appropriate, offer 



sufficient flexibility to cover the product line's intended scope, can be exercised in a way 

that lets products be built quickly, and do not impose unacceptable runtime performance 

costs. Also, different products in the product line may have different quality-attribute 

requirements, and the architecture will have to be evaluated for its ability to provide all 

required combinations.  

Often, some of the hardware and other performance-affecting factors for a product line 

architecture are unknown to begin with. Thus, the evaluation of the product line 

architecture must establish bounds on the performance that the architecture is able to 

achieve, assuming bounds on hardware and other variables. Use the evaluation to identify 

potential contention problems and to put in place the policies and strategies to resolve 

contention. The evaluation of a particular instance of the product line architecture can 

verify whether the hardware and performance decisions that have been made are 

compatible with the goals of that instance.  

Application to Core Asset Development 

Clearly, an evaluation should be applied to the core asset that is the product line 

architecture. As the requirements, business goals, and architecture all evolve over time, 

there should be periodic (although not frequent) mini-evaluations that discover whether 

the architecture and business goals are still well matched. Some evaluation methods 

produce a report that summarizes what the articulated, prioritized quality-attribute goals 

are for the architecture, and how the architecture satisfies them. Such a report makes an 

excellent rationale record, which can then accompany the architecture throughout its 

evolution as a core asset in its own right.  

An architecture evaluation can also be performed on components that are candidates to be 

acquired as core assets, as well as on components developed in-house. In either case, the 

evaluation proceeds with technical personnel from the organization that developed the 

potential acquisition. An architecture evaluation is not possible for "black-box" 

architecture acquisitions where the architecture is not visible. The quality-attribute goals 

to be used for the evaluation will include how well the potential acquisition will (1) 

support the quality goals for the product line and (2) evolve over time to support the 

intended evolution of the products in the product line.  

Application to Product Development 

An architecture evaluation should be performed on an instance or variation of the 

architecture that will be used to build one or more of the products in the product line. The 

extent to which this is a separate, dedicated evaluation depends on the extent to which the 

product architecture differs in quality-attribute-affecting ways from the product line 

architecture. If it doesn't, then these product architecture evaluations can be abbreviated, 

since many of the issues that would normally be raised in a single product evaluation will 

have been dealt with in the evaluation of the product line architecture. In fact, just as the 

product architecture is a variation of the product line architecture, the product 

architecture evaluation is a variation of the product line architecture evaluation. 



Therefore, depending on the architecture evaluation method used, the evaluation artifacts 

(scenarios, checklists, and so on) will certainly have reuse potential, and you should 

create them with that in mind. Document a short attached process for the architecture 

evaluation of the product line or product architectures. This process description would 

include the method used, what artifacts can be reused, and what issues to focus on. The 

results of architecture evaluation for product architectures often provide useful feedback 

to the architect(s) of the product line architecture and fuel improvements in the product 

line architecture.  

Finally, when a new product is proposed that falls outside the scope of the original 

product line (for which the architecture was presumably evaluated), the product line 

architecture can be reevaluated to see if it will suffice for this new product. If it will, the 

product line's scope is expanded to include the new product. If it will not, the evaluation 

can be used to determine how the architecture would have to be modified to 

accommodate the new product.  

Specific Practices 

Several different architecture evaluation techniques exist and can be modified to serve in 

a product line context. Techniques can be categorized broadly as either questioning 

techniques (those using questionnaires, checklists, scenarios, and the like as the basis for 

architectural investigation) or measuring techniques (such as simulation or 

experimentation with a running system) [Abowd 96]. A well-versed architect should have 

a spectrum of techniques in his or her evaluation kit. For full-fledged architectures, 

software performance engineering or a method such as the ATAM
SM
 or the SAAM is 

indispensable. For less fully worked out designs, a technique such as Active Reviews for 

Intermediate Designs (ARID) is handy. For validating architectural (and other design) 

specifications, active design reviews (ADRs) are helpful. A bibliography of software 

architecture analysis, available from the journal Software Engineering Notes [Zhao 99], 

provides more alternatives. 

ATAM
SM
: The Architecture Tradeoff Analysis Method

SM
 (ATAM) is a scenario-based 

architecture evaluation method that focuses on a system's quality goals. The input to the 

ATAM consists of an architecture, the business goals of a system or product line, and the 

perspectives of stakeholders involved with that system or product line. The ATAM 

achieves its evaluation of an architecture by utilizing an understanding of the 

architectural approach that is used to achieve particular quality goals and the implications 

of that approach. The ATAM utilizes stakeholder perspectives to derive a collection of 

scenarios giving specific instances for usage, performance requirements, various types of 

failures, possible threats, and a set of likely modifications. The scenarios are used for the 

evaluators to understand the inherent architectural risks, sensitivity points to particular 

quality attributes, and tradeoffs among quality attributes. Of particular interest to ATAM-

based evaluations of product line architectures are the sensitivity points to extensibility 

(or variation) and the tradeoffs of extensibility with other quality-attribute goals (usually 

real-time performance, security, and reliability). 



The output of an ATAM evaluation includes: 

• the collection of scenarios that represent the stakeholders' highest-priority 

expression of usage and quality-attribute goals for the system and its architecture 

• a utility tree that assigns specific scenarios to a location in the "space" of quality 

attributes that apply to the system(s) whose architecture is being evaluated 

• specific analysis results, including the explicit identification of sensitivity points, 

tradeoffs, and other architectural decisions that impact desired quality attributes 

either positively or problematically. The latter constitute areas of risk. 

The ATAM can be used to evaluate both product line and product architectures at various 

stages of development (conceptual, before code, during development, or after 

deployment). An ATAM evaluation usually requires three full days plus some 

preparation and preliminary investigation time. The ATAM is described fully by 

Clements et al. [Clements 01b] and on the World Wide Web [SEI ATA]. 

SPE: Software performance engineering (SPE) is a method for making sure that a design 

will allow a system to meet its performance goals before it has been built. SPE involves 

articulating the specific performance goals, building coarse-grained models to get early 

ideas about whether the design is problematic, and refining those models along well-

defined lines as more information becomes available. Conceptually, SPE resembles the 

ATAM, in which the singular quality of interest is performance. Connie Smith has 

written both the definitive resource for SPE and its concise method description [Smith 90, 

Smith 99]. 

ARID: Active Reviews for Intermediate Designs (ARID) [Clements 00] is a hybrid 

design review method that combines the active design review philosophy of ADRs with 

the scenario-based analysis of the ATAM and SAAM. ARID was created to evaluate 

partial (subsystem, for example) designs in their early or conceptual phases, before they 

are fully documented. While such designs are architectural in nature, they are not 

complete architectures. ARID works by assembling stakeholders for the design, having 

them adopt a set of scenarios that express a set of meaningful ways they would want to 

use the design, and then having them write code or pseudocode that uses the design to 

carry out each scenario. This will wring out any conceptual flaws early, plus give 

stakeholders an early familiarity with the design until it is completely documented. An 

ARID exercise takes from one to two days. 

Active design reviews: An Active Design Review (ADR) [Parnas 85] is a technique that 

can be used to evaluate an architecture still under construction. ADRs are particularly 

well-suited for evaluating the designs of single components or small groups of 

components before the entire architecture has been solidified. The principle behind ADRs 

is that stakeholders are engaged to review the documentation that describes the interface 

facilities provided by a component, but the stakeholders are asked to complete exercises 

that compel them to actually use the documentation. For example, each reviewer may be 

asked to write a short code segment that performs some useful task using the component's 

interface facilities, or each reviewer may be asked to verify that essential information 



about each interface operation is present and well-specified. ADRs are contrasted with 

unstructured reviews in which people are asked to read a document, attend a long 

meeting, and comment on whatever they wish. In an ADR, there is no meeting; reviewers 

are debriefed (or walked through their assignments) individually or in small informal 

groups. The key is to avoid asking questions to which a reviewer can blithely and without 

much thought answer "yes" or "no." An ADR for a medium-sized component usually 

takes a full day from each of about a half dozen reviewers who can work in parallel. The 

debriefing takes about an hour for each session.  

Practice Risks 

The major risk associated with this practice is failing to perform an effective architecture 

evaluation that will prevent unsuitable architectures from being allowed to pollute a 

software product line effort. Architecture evaluation is the safety valve for product line 

architectures, and an ineffective evaluation will lead to the same consequences as an 

unsuitable architecture, which were listed in the "Architecture Definition" practice area.  

An ineffective evaluation can result from the following:  

• Wrong people involved in the evaluation: If the architect is not involved in the 

evaluation, it is unlikely that enough information will be uncovered to make the 

evaluation worthwhile. Similarly, if the architecture's stakeholders are not 

involved, the comprehensive goals and requirements for the architecture (against 

which it must be evaluated) will not emerge. 

• Wrong time in the life cycle: If the review is too early, not enough decisions 

have been made, so there isn't anything to evaluate. If the review is too late, little 

can be changed as a result of the evaluation.  

• No time for evaluation: If time is not planned for the evaluation, the people who 

need to be involved will not be able to give it their attention, the evaluation will 

not be conducted effectively, and the results will be superficial at best.  

• Wrong interpretation of evaluation: The results of any architecture evaluation 

should not be seen as a complete enumeration of all of the risks in the 

development. Process deficiencies, resource inadequacies, personnel issues, and 

downstream implementation problems are all risks unlikely to be exposed by an 

architecture evaluation. 

• Failure to reevaluate: As the architecture inevitably evolves, or the criteria for 

its suitability inevitably evolve, it should be reevaluated (perhaps using a 

lightweight version of the original evaluation) periodically to give the 

organization confidence that they are on the right track. 

Further Reading 

[Clements 01b] is a primer on software architecture evaluation, containing a detailed 

process model and practical guidance for applying the ATAM and comparing it with 

other evaluation methods. Other methods, including ARID, are also covered.  



[Parnas 85] is the original description by Parnas and Weiss of ADRs and remains the 

most comprehensive source of information on this approach.  

[SEI ATA], the home page for the Software Engineering Institute's Software Architecture 

Technology (formerly known as the Architecture Tradeoff Analysis) Initiative, contains 

publications about the ATAM and the SAAM, as well as other software architecture 

topics.  

[Smith 90] remains the definitive treatment of performance engineering.  

[Smith 01] is a good accompaniment, but not a substitute, for [Smith 90].  

[Zhao 99] has compiled a bibliography on software architecture analysis. His Web site, 

where the list is kept up to date, is cited on the SEI's ATA page.  

Component Development 

One of the tasks of the software architect is to produce the list of components that will 

populate the architecture. This list gives the development, mining, and acquisition teams 

their marching orders for supplying the parts that the software system will comprise. The 

term "component" is about as generic as the term "object"; definitions for each term 

abound. Simply stated, components are the units of software that go together to form 

whole systems (products), as dictated by the software architecture for the products. 

Szyperski offers a more precise definition that applies well [Szyperski 98]: 

A software component is a unit of composition with contractually specified 

interfaces and explicit context dependencies only. A software component can be 

deployed independently and is subject to composition by third parties.  

By component development, we mean the production of components that implement 

specific functionality within the context of a software architecture. The functionality is 

encapsulated and packaged, then integrated with other components using an 

interconnection method.  

Software components trace their heritage back to the subroutine, which was the first unit 

of software reuse. Programmers discovered they could invoke a previously written 

segment of code and have access to its functionality while being blissfully unconcerned 

with its implementation, development history, storage management, and so forth. Soon, 

very few people ever again had to worry about how to code, say, a numerically stable 

double-precision cosine algorithm. Besides saving time, this practice elevated our 

thinking: we could think "cosine" and not about storage registers and overflowing 

multiplications. It also elevated our languages: sophisticated subroutines were 

indistinguishable from primitive, atomic statements in the programming language. 

What we now call component-based software development flows in an unbroken line 

from these early beginnings. Modern components are much larger, are much more 



sophisticated, carry us much higher into domain-specific application realms, and have 

more complex interaction mechanisms than subroutine invocation, but the concepts and 

the reasons we embrace the concepts remain the same. In the same way that early 

subroutines liberated the programmer from thinking about details, component-based 

software development shifts the emphasis from programming software to composing 

software systems. Implementation has given way to integration as the focus. At its 

foundation is the assumption that there is sufficient commonality in many large software 

systems to justify developing reusable components to exploit and satisfy that 

commonality. Today, we look for components that provide large collections of related 

functionality all at once (instead of a cosine routine, think Mathematica) and whose 

interconnections with each other are loose and flexible. If we have control over the 

decomposition into components and the interfaces of each, then the granularity and 

interconnection is determined by our system's software architecture. If the components 

are built externally, then their granularity and interfaces are imposed on us, and they 

affect our software architecture. 

The practice area of component development is concerned with the former case, and how 

to build the components so that the instructions given to us in the architecture are carried 

out. (One type of instruction carried out by the architecture is what other parts of a 

system a component is allowed to use. A layered view of an architecture, for example, is 

highly concerned with this. Allowed-to-use information is not part of the component's 

interface or of its functionality, but it is nevertheless architectural and must be honored 

by the implementation.) Very complex components may have substructure of their own 

and be implemented partially by employing smaller components, either built or acquired. 

Aspects Peculiar to Product Lines 

For the purposes of product lines, components are the units of software that go together to 

form whole systems (products), as dictated by the product line architecture for the 

products and the product line as a whole. If we appeal to the Szyperski definition of 

components given above, "deployed independently" may simply mean installed into a 

product line's core asset base where they are made available for use in one or more 

products. The "third parties" are the product developers, who compose the component 

with others to create systems. The contractually specified interfaces are paramount, as 

they are in any software development paradigm with software architecture at its 

foundation. 

The component development portion of a product line development effort focuses on 

providing the operational software that is needed by the products and that is to be 

developed in-house. The resultant components either are included in the core asset base 

and hence used in multiple products in the product line or are product-specific 

components. Components that are included in the core asset base must support the 

flexibility needed to satisfy the variation points specified in the product line architecture 

and/or the product line requirements. Needed functionality is defined in the context of the 

product line architecture. The architecture also defines those places at which variation is 

needed.  



The singular aspect of component development that is peculiar to product lines is 

providing required variability in the developed components via the mechanisms that are 

described in the specific practices for this practice area. 

Application to Core Asset Development 

If a developed component is to be a core component, it must have an attached process 

associated with it that explains how any built-in component-level variability can be 

exercised in order to produce an instantiated version for a particular product. Developed 

components and their related artifacts (interface specifications, attached processes for 

instantiating built-in variability, test support, and so on) constitute a major portion of the 

product line's core asset base. Hand in hand with the software architecture that mandated 

them into existence, the core components form the conceptual basis for building products. 

Consequently, component development, as described above, is a large portion of the 

activity on the core asset development side of product line operations.  

Application to Product Development 

If a developed component is not to be part of the core asset base, this suggests that it is 

specific to a particular product and therefore probably does not have much variability 

built into it. While the development task must obey the architecture as strictly as it must 

for core components, noncore development is likely to be simpler. Nevertheless, 

developers of noncore components would be wise to look for places where variability 

could be installed in the future, should the component in question ever turn out to be 

useful in a group of products. 

Components for a product are (1) used directly from the core asset base, (2) used directly 

after binding the built-in variabilities, (3) used after modification or adaptation, or (4) 

developed anew. Since the first two cases are pro forma, we will discuss the last two. 

Adapting components: Components that are being used in a context other than the one 

for which they were originally developed often do not exactly fit their assigned roles. 

There are a couple of techniques for accommodating these differences. The adapter 

design pattern [Gamma 95] imposes an intermediary between two components. The 

adapter can compensate for mismatches in number or types of parameters within a 

service signature, provide synchronization in a multithreaded interaction, and adjust for 

many other types of incompatibilities. Scripting languages can often be used to 

implement the adapter. 

The second technique is to modify the component to fit its new environment. This may be 

impossible if the source code is not available. Even if it is possible, it is usually a bad 

idea. Cloning an existing component creates a new asset that must be managed and 

creates a dependency that cannot be expressed explicitly. It can vary independently of its 

parent component, making maintenance of both pieces a difficult task. Object-oriented 

notations provide a semantic device to express this type of relationship by defining the 

dependent class in terms of an extension of the original class. Although similar devices 



do not exist at the component level, a new component may be implemented by deriving 

objects from those that implement the original component. 

Developing new components: New development should occur only after a thorough 

search has been made of existing core assets. In some organizations, the product team 

may have to "contract" with a component development organization to build the needed 

component. If it is built in the product organization, there should be product line 

standards to follow for the creation of the core assets supporting the component.  

Whether a product component is adapted or built from scratch, it should be reviewed 

ultimately for "promotion" to the core asset base (and, in fact, should be developed with 

that in mind). To help with that review, robustness analysis [Jacobson 97] can be applied 

to determine how flexible the product is with respect to future changes in requirements. 

By examining change cases (use cases that are not yet requirements), the team identifies 

points in the system that would need changes in order to support the new requirements. 

This provides a feedback loop to the component developers. Specifications for new 

components and modifications to existing ones are the outputs of this analysis.  

Specific Practices 

The specific practices in this practice area all deal with component-level variability 

mechanisms. 

Variability mechanisms (1): Jacobson et al., discuss the mechanisms for supporting 

variability in components, which are shown in the table below [Jacobson 97]. Each 

mechanism provides a different type of variability. The variation of functionality happens 

at different times depending on the type. Some of these variation types are included in the 

specification implicitly. For example, when a parameter is used, the specification is taken 

to include the specific type of component mentioned in the contract or any component 

that is a specialization of that component. In the template instantiation example in the 

table, the parameter to the template is Container, which permits variation implicitly via 

the inheritance pattern. The Container parameter can be replaced by any of its subclasses, 

such as Set or Bag. 

Types of Variation [Jacobson 97] 

Mechanism Time of 
Specialization 

Type of Variability 

Inheritance At class definition 
time 

Specialization is done by modifying or adding to existing 
definitions. 
 
Example: LongDistanceCall inherits from PhoneCall. 

Extension At requirements time One use of a system can be defined by adding to the 
definition of another use.  
 
Example: WithdrawalTransaction extends BasicTransaction. 

Uses At requirements time One use of a system can be defined by including the 
functionality of another use.  



 
Example: WithdrawalTransaction uses the Authentication 
use. 

Configuration Previous to runtime A separate resource, such as file, is used to specialize the 
component.  
 
Example: JavaBeans properties file 

Parameters At component 
implementation time 

A functional definition is written in terms of unbound 
elements that are supplied when actual use is made of the 
definition.  
 
Example: calculatePriority(Rule) 

Template 
instantiation 

At component 
implementation time 

A type specification is written in terms of unbound elements 
that are supplied when actual use is made of the 
specification.  
 
Example: ExceptionHandler<Container> 

Generation Before or during 
runtime 

A tool that produces definitions from user input.  
 
Example: Configuration wizard 

Variability can also be shown explicitly, but that is more cumbersome than the implicit 

approach. The javadoc tool in Java lists all of the known subclasses of the class whose 

documentation is being created. This requires that the documentation for the parent class 

be regenerated every time a new subclass is declared. Any explicit listing of variants will 

require this type of maintenance. The variations may also be captured in an activity 

diagram that maps alternative paths.  

One aspect of variability that is important in a product line effort is whether the variants 

must be identified at the time of product line architecture definition or can be discovered 

during the individual product's architectural phase. Inheritance allows for a variant to be 

created without the existing component having knowledge of the new variant. Likewise, 

template instantiation allows for the discovery of new parameter values after the template 

is designed; however, the new parameter must satisfy the assumptions of the template, 

which may not be stated explicitly in the interface of the formal parameter. In most cases, 

configuration further constrains the variation to a fixed set of attributes and a fixed set of 

values for each attribute.  

Variability mechanisms (2): Anastasopoulos and Gacek expound a somewhat different 

set of variability options [Anastasopoulos 00]. Their list includes: 

• Aggregation/delegation, an object-oriented technique in which functionality of an 

object is extended by delegating work it cannot normally perform to an object that 

can. The delegating object must have a repertoire of candidates (and their 

methods) known to it and assumes a role resembling that of a service broker. 

• Inheritance, which assigns base functionality to a superclass and extended or 

specialized functionality to a subclass. Complex forms include dynamic and 

multiple inheritance, in addition to the more standard varieties. 



• Parameterization, as described above.  

• Overloading, which means reusing a named functionality to operate on different 

types. Overloading promotes code reuse, but at the cost of understandability and 

code complexity. 

• Properties in the Delphi language, which are attributes of an object. Variability is 

achieved by modifying the attribute values or the actual set of attributes. 

• Dynamic class loading in Java, where classes are loaded into memory when 

needed. A product can query its context and that of its user to decide at runtime 

which classes to load.  

• Static libraries, which contain external functions that are linked to after 

compilation time. By changing the libraries, one can change the implementations 

of functions whose names and signatures are known. 

• Dynamic link libraries, which give the flexibility of static libraries but defer the 

decision until runtime based on context and execution conditions. 

• Conditional compilation puts multiple implementations of a module in the same 

file, with one chosen at compile-time by providing appropriate preprocessor 

directives.  

• Frame technology. Frames are source files equipped with preprocessor-like 

directives that allow parent frames to copy and adapt child frames and form 

hierarchies. On top of each hierarchical assembly of frames lies a corresponding 

specification frame that collects code from the lower frames and provides the 

ready-to-compile module that results. 

• Reflection, the ability of a program to manipulate data that represents information 

about itself or its execution environment or state. Reflective programs can adjust 

their behavior based on their context.  

• Aspect-oriented programming, which was described in the "Architecture 

Definition" practice area. 

• Design patterns, which are extensible, object-oriented solution templates 

catalogued in various handbooks (for example [Gamma 95]). The adapter pattern 

was mentioned specifically as a variability mechanism earlier in this practice area. 

Practice Risks 

The overriding risk in component development is building unsuitable components for the 

software product line applications. This will result in poor product quality, the inability to 

field products quickly, low customer satisfaction, and low organizational morale. 

Unsuitable components can come about by: 

• Not enough variability: Components not only must meet their behavioral and 

quality requirements (as imposed on them by the product line's software 

architecture) but also must be tailorable in preplanned ways to enable product 

developers to instantiate them quickly and reliably in the correct forms for 

specific products. 

• Too much variability: Building in too much variability can prevent the 

components from being understood well enough to be used effectively, or can 

cause unforeseen errors when the variabilities conflict with each other. 



• Choosing the wrong variation mechanism(s) for the job: The wrong choice 

can result in components that cannot be tailored at the time they need to be. 

• Poor quality of components: Components of poor quality will set back any 

effort, but poor core asset components will undermine the entire product line. 

Product builders will lose confidence with the core asset builders, and pressure to 

bypass them will mount. The "Testing" practice area should be applied to 

ameliorate this risk. 

Further Reading 

[Szyperski 98]: Szyperski provides a comprehensive presentation on components. It 

provides a survey of component models and covers supporting topics such as domain 

analysis and component frameworks.  

[Jacobson 97] and [Anastasopoulos 00]: These two works together provide a superb 

compendium of component-level variability mechanisms that are available to a product 

line component developer.  

Mining Existing Assets 

Mining existing assets refers to resurrecting and rehabilitating a piece of an old system to 

serve in a new system for which it was not originally intended. Often it simply refers to 

finding useful legacy code from an organization's existing systems portfolio and reusing 

it within a new application. However, the code-only view completely misses the big 

picture. We have known for years that in the grand scheme of things, code plays a small 

role in the cost of a system. Coding is simply not what's difficult about system/software 

development. Rich candidates for mining include a wide range of assets besides code—

assets that will pay lucrative dividends. Business models, rule bases, requirements 

specifications, schedules, budgets, test plans, test cases, coding standards, algorithms, 

process definitions, performance models, and the like are all wonderful assets for reuse. 

The only reason so-called "code reuse" pays at all is because of the designs and 

algorithms and interfaces that come along with the code [Clements 01a, p. 99]. 

For example, whole or partial architectures, and the design decisions they embody 

(captured by documented rationale) are especially valuable. And if a mined architecture 

is suitable, then probably the components that originally populated it can be migrated 

along with it. But to determine fitness for reuse of either the architecture or its 

components, it is necessary to obtain a thorough architectural understanding of the legacy 

system. And, of course, the architect may be long gone. If good documentation does not 

exist, the process of architecture reconstruction may need to be employed. Reconstruction 

will reveal the interactions and relations among the architecture's components. It will 

illuminate constraints for how, if mined, the components can interact within the 

architecture of the new or updated software. It can also help to understand the tradeoff 

options available for reusing components in a new or improved way [Kazman 02, 

O'Brien 02]. Once the architecture has been extracted, it can be evaluated for suitability 

using the techniques described in the "Architecture Evaluation" practice area. 



Documentation is an asset that is often overlooked and may have significant reuse 

potential. Much of the corporate knowledge about the software assets may be captured in 

the existing legacy documentation assets. This makes these documentation assets highly 

desirable candidates for mining and rehabilitation, especially where the associated 

software assets are being mined and rehabilitated and they closely correlate with one 

another. 

Mining involves understanding of what is available and what is needed, and 

rehabilitation. Both require support from analysts who are familiar with both the legacy 

system and the new system. For software assets, rehabilitation usually requires the 

support of the new system's architect, who will direct how the assets will be integrated 

into the new architecture. 

For software assets, focus first on large-grained assets that can be wrapped or that will 

require only interface changes rather than changes in large chunks of the underlying 

algorithms. Determine how the candidate asset can fit into the architecture of the targeted 

new system. Don't forget to consider the requirements for performance, modifiability, 

reliability, and other nonbehavioral qualities. Also, don't forget to include all the 

nonsoftware assets associated with the software: requirements, design, test, and 

management artifacts.  

Once the existing assets have been organized and understood and candidate assets for 

mining have been identified, the rehabilitation of these assets can begin. In many ways, a 

mining initiative that involves extensive rehabilitation of assets can resemble a 

reengineering project [Seacord 03, Sneed 01, Ulrich 02] or a development project in its 

own right. Technical planning (as in the "Technical Planning" practice area) can help in 

planning and coordinating the effort.  

Aspects Peculiar to Product Lines 

Mined assets for a product line must have the same qualities as newly developed core 

assets. Mined assets must be (re)packaged with reuse in mind, must meet the product line 

requirements, must align with the product line architecture, and must meet the quality 

goals consistent with the goals of the product line. Product lines must focus on the 

strategic, large-grained reuse of the mined assets. The primary issues that motivate large-

scale reuse for a product line are schedule, cost, and quality. The mined and rehabilitated 

assets must meet the needs of the plurality of systems in the product line. A product line 

accommodates a longer and wider view of future system change; any mined asset must be 

robust enough to accommodate such change gracefully.  

When mining an asset (software or otherwise) for a software product line, consider:  

• its alignment with requirements for immediate products in terms of both common 

features and variation points  

• its appropriateness for potential future products  



• the amount of effort required to make the asset's interface conform to the 

constraints of the product line architecture  

• the extensibility of the asset with respect to its potential future based on the future 

evolution that will be required of the architecture  

• its maintenance history  

• other assets (for example, script and data files) that may be required from the 

legacy system  

• projected long term cost of the mined asset  

When mining software assets for single systems, we look for components that perform 

specific functions well. However, for product line systems, quality attributes such as 

maintainability and suitability become more important over time. Thus, we might accept 

mined assets for product lines that are suboptimal in fulfilling specific tasks if they meet 

the critical quality-attribute goals. An asset's total cost of ownership across the products 

for which it will be used should be lower than the sum of similar assets mined for one-

time use.  

Application to Core Asset Development 

The process of mining existing assets is largely about finding suitable candidates for core 

assets of the product line. Software assets that are well structured and well documented 

and have been used effectively over long periods of time can sometimes be included as 

product line core assets with little or no change. Software assets that can be wrapped to 

satisfy new interoperability requirements are also desirable. On the other hand, assets that 

don't satisfy these requirements are undesirable and may have higher maintenance costs 

over the long term. Depending on the legacy inventory and its quality, an assortment of 

candidate assets is possible, from architectures to small pieces of code.  

An existing architecture should be analyzed carefully before being accepted as the pivotal 

core asset—the product line architecture. See the "Architecture Evaluation" practice area 

for a discussion of what that analysis should entail.  

Candidate software assets must align with the product line architecture, meet specified 

component behavior requirements, and accommodate any specified variation points. In 

some cases, a mined component may represent a potentially valuable core asset but won't 

fit directly into the product line architecture. Usually, the component will need to be 

changed to accommodate the constraints of the architecture. Sometimes a change in the 

architecture might be easier, but of course this will have implications for other 

components, for the satisfaction of quality goals, and for the support of the products in 

the product line.  

Once in the product line core asset base, mined assets are treated in the same way as 

newly developed assets.  



Application to Product Development 

It is possible and reasonable to use mined assets for components that are unique to a 

single product in the product line, but in this case the mining activity will become 

indistinguishable from mining in the non-product-line case. The same issues discussed 

above (paying attention to quality attributes, architecture, cost, and time-to-market) will 

still apply. And it will be worth taking a long, hard look at whether the mined component 

really is unique to a single product or could be used in other products as well, thus 

making the cost of its rehabilitation more palatable. In that case, the team responsible for 

mining would be wise to look for places where variability could be installed in the future, 

should the asset in question ever turn out to be useful in a group of products.  

Specific Practices 

Options Analysis for Reengineering (OAR): OAR is a method that can be used to 

evaluate the feasibility and economy of mining existing components for a product line. 

OAR operates like a funnel in which a large set of potential assets is screened out so that 

the effort can most efficiently focus on a smaller set that will most effectively meet the 

technical and programmatic needs of the product line. OAR prescribes the following 

steps [Bergey 01, Bergey 02a, Bergey03]. 

1. Establish mining context: First, capture your organization's product line 

approach, legacy base, and expectations for mining components. Establish the 

programmatic and technical drivers for the effort, catalogue the documentation 

available from the legacy systems, and identify a broad set of candidate 

components for mining. This task establishes the needs of the mining effort and 

begins to illuminate the types of assets that will be most relevant for mining. It 

also identifies the documentation and artifacts that are available, and it enables 

focused efforts to close gaps in existing documentation.  

2. Inventory components: Next, identify the legacy system components that can 

potentially be mined for use in a product line core asset base. During this activity, 

identify required characteristics of the components (such as functionality, 

language, infrastructure support, and interfaces) in the context of the product line 

architecture. This activity creates an inventory of candidate legacy components 

together with a list of the relevant characteristics of those components. It also 

creates a list of those needs that cannot be satisfied through the mining effort. 

3. Analyze candidate components: Next, analyze the candidate set of legacy 

components in more detail to evaluate their potential for use as product line 

components. Screen them on the basis of how well they match the required 

characteristics. This activity provides a list of candidate components, together 

with estimates of the cost and effort required for rehabilitating those components. 

4. Analyze mining options: Next, analyze the feasibility and viability of mining 

various aggregations of components on the basis of cost, effort, and risk. 

Assemble different aggregations of components and weigh their costs, benefits, 

and risks.  



5. Select mining option: Finally, select the mining option that can best satisfy the 

organization's mining goals by balancing the programmatic and technical 

considerations. First, establish drivers for making a final decision, such as cost, 

schedule, risks and difficulty. Tradeoffs often can be established by this activity. 

Evaluate each mining option (component aggregation) on the basis of how well it 

satisfies the most critical driver. Select an option, and then develop a final report 

to communicate the results. 

OAR has been used to make decisions on mining components for a satellite tracking 

system [Bergey 01]. OAR has also been used to evaluate the extent to which components 

proposed by suppliers for reuse in a product line meet the product line's stated needs. It 

has evaluated the types of changes required to fit the component into the product line 

[Bergey 03, Muller 03]. OAR is in the process of being extended to handle other asset 

types such as unit test cases and documentation. 

Architecture recovery/reconstruction tools: Some tools that are available to assist in 

the architecture reconstruction process include Rigi [Muller 88], the Software Bookshelf 

[Finnegan 97], DISCOVER [Tilley 98], and the Dali workbench [Kazman 98] and the 

ARMIN tool [O'Brien 03]. 

The ARMIN tool is a flexible, lightweight tool for architecture reconstruction. Other 

tools are used to extract information that is then used by ARMIN to generate architectural 

views. Using ARMIN involves five steps: 

1. Information extraction, the activity uses tools such as parsers to extract 
information from existing design and implementation artifacts such as the source 

code.  

2. Database construction, which stores the extracted information in a database for 
future analysis. This may involve changing the format of the data.  

3. View fusion, which augments the extracted information by combining 
information to generate a set of low-level views of the software.  

4. Architecture view composition, which generates a set of architecture views 
through abstraction and visualizes these views and enables the user to explore and 

manipulate views.  

5. 5. Architecture analysis, which evaluates the resultant architecture and in some 
cases evaluates the conformance of the as-built architecture obtained from 

reconstruction to an as-designed architecture.  

Tool support makes mining undocumented software assets more effective and 

significantly less cumbersome by reducing the time it takes to ascertain what a piece of 

software does and how it interacts with other parts of the system. Tools can be brought to 

bear that automatically chart interconnections of various kinds among software elements. 

More valuable than tools, however, are the people who worked on and are knowledgeable 

about the legacy software. Find them if you can. They can tell you the strengths and 

weaknesses of the software that weren't written down, and they can give you the "inside 

story" that no tool can hope to recover. 



Mining Architectures: In some cases the software architecture of an existing system can 

become the product line architecture. Mining Architectures for Product Lines (MAP) is a 

method that determines whether the architectures of existing systems are similar and 

whether the corresponding systems have the potential of becoming a software product 

line [O'Brien 01]. The MAP method combines techniques for architecture reconstruction 

and product line analysis to analyze the architectural patterns and attributes of a set of 

systems. This analysis determines if there are similar components and connections 

between the components within these systems and examines their commonalities and 

variabilities. MAP has been used in the development of a prototype product line 

architecture for a sunroof system. MAP and OAR can also be used together where MAP 

supports decision-making on reusing architectures, while OAR supports decision-making 

on identifying components that fit within the constraints of the architecture. 

Requirements Reuse and Feature Interaction Management: Developers realize that 

complex applications are often best built by using a number of different components, 

each performing a specialized set of services. But the components, each embodying 

different requirements in different service domains, can interact in unpredictable ways. 

How to design components to minimize or at least manage interaction is a current issue. 

This problem of interaction becomes even more significant when reusing requirements. 

Interactions must be detected and resolved in the absence of a specific implementation 

framework. Shehata et al. stresses that an understanding of interaction management is key 

to understanding how to reuse requirements and describes a conceptual process 

framework for formulating and reusing requirements [Shehata 02]. Reusable 

requirements are classified into three different levels of abstraction for software 

requirements: domain-specific requirements, generic requirements and domain-

requirements frameworks. This classification is used as the basis for a reusability plan to 

support the view of the importance of interaction management. 

Wrapping: Wrapping involves changing the interface of a component to comply with a 

new architecture, but not making other changes in the component's internals. In fact, pure 

wrapping involves no change whatsoever in the component, but only interposing a new 

thin layer of software between the original component and its clients. That thin layer 

provides the new interface by translating to and from the old. There are enormous 

advantages to reusing existing assets with little or no internal modification through 

wrapping. As soon as any modification takes place, the associated documentation 

changes, the test cases change, and a ripple effect takes place that influences other 

associated software. Wrapping prevents this and allows the "as-is" reuse of many of the 

assets associated with the software component, such as its test cases and internal design 

documentation. The idea is to translate the "as-is" interface to the "to-be" interface. 

Weiderman et al. discuss some of the available wrapping techniques [Weiderman 97]. 

Seacord [Seacord 01] discusses a case study that applied several wrapping techniques. 

Adapting components: Software components that are being used in a context other than 

the one for which they were originally developed often do not exactly fit their assigned 

roles. There are a couple of techniques for accommodating these differences. The adapter 

design pattern [Gamma 95] imposes an intermediary between two components. The 



adapter can compensate for mismatches in number or types of parameters within a 

service signature, provide synchronization in a multithreaded interaction, and adjust for 

many other types of incompatibilities. Scripting languages can often be used to 

implement the adapter. 

Practice Risks 

The major risks associated with mining are (1) failure to find the right assets and (2) 

choosing the wrong assets. Both will result in schedule slippage and opportunity cost in 

terms of what other productive activities the staff could have been carrying out. A 

secondary risk is inadequate support for the mining operation, which will result in a 

failed operation and the (misguided) impression that mining is not a viable option. 

Specific risks associated with an unsuccessful search operation include: 

• Flawed search: The search for reusable assets may be fruitless, resulting in a 

waste of time and resources. Or, relevant assets may be overlooked, resulting in 

time and resources being wasted duplication of what already exists. A special case 

of the latter is when noncode assets are shortsightedly ignored. To minimize both 

of these risks, build a catalogue of your reusable assets (including noncode assets) 

and treat that catalogue as a core asset of the product line. It will save time and 

effort next time. 

• Overly successful search: There may be too many similar assets, resulting in too 

much effort spent on analysis. 

• Fuzzy criteria: The criteria for what to search for need to be crisp enough so that 

an overly successful search is avoided, yet general enough so that not all viable 

candidates are ruled out. 

• Failure to search for nonsoftware assets: Failure to consider nonsoftware assets 

in your search, such as specifications, test suites, procedures, budgets, work plans, 

requirements, and design rationale, will reduce the effectiveness of any mining 

operation.  

• Inappropriate assets: Assets recovered from a search may appear to be usable 

but later turn out to be of inferior quality or unable to accommodate the scope of 

variation required.  

• Bad rehabilitation estimates: Initial estimates of the cost of rehabilitation may 

be inadequate, leading to escalating and unpredictable costs. 

Organizational issues leading to mining risks include: 

• Lack of corporate memory: Corporate memory may not be able to provide 

sufficient data to utilize the software asset effectively. 

• Inappropriate methods: The wrong reengineering methods and tools may be 

selected, leading to schedule and cost overruns. 

• Lack of tools: Tools required for the mining effort may not be integrated to the 

extent necessary, leading to risky and expensive workarounds. 



• Turf conflicts: Potential turf conflicts may undermine the decision process in 

selecting between similar candidate assets. Or, a repository of assets may be off 

limits for political or organizational reasons. 

• Inability to tap needed resources: There may be an inability to free resources 

from the group that originally created the component to rehabilitate or renovate it. 

Further Reading 

[Seacord 03]: This book on modernizing legacy systems by Seacord et al. provides 

guidance on how to implement a successful modernization strategy and specifically 

describes a risk-managed, incremental approach that encompasses changes in software 

technologies, engineering processes, and business practices. 

Software System Integration 

Software system integration refers to the practice of combining individual software 

components into an integrated whole. Software is integrated when components are 

combined into subsystems or when subsystems are combined into products. In a waterfall 

model, software system integration appears as a discrete step toward the end of the 

development life cycle between component development and integration testing. In an 

incremental model, integration is an ongoing activity; components and subsystems are 

integrated as they are developed into multiple working mini-versions of the system. An 

incremental approach to integration decreases risk, because problems encountered during 

software integration are often the most complex. Object technologists are proponents of 

incremental development, and object-oriented development methods are based on the 

principle of ongoing integration practices  

Integration is bound up in the concept of component interfaces. Recall from the 

"Architecture Definition" practice area that an interface between two components is the 

set of assumptions that the programmers of each component can safely make about the 

other component [Parnas 72]. This includes its behavior, the resources it consumes, how 

it acts in the face of an error, and other assumptions that should be documented as part of 

a component's interface. This definition is in stark contrast to the simplistic (and quite 

insufficient) notion of "interface" that merely refers to the "signature" or syntactic 

interface that includes only the program's names and parameter types. This definition of 

"interface" may let two components compile together successfully, but only the Parnas 

definition (which subsumes the simpler one) will let two components work together 

correctly. When interfaces are defined thoughtfully and documented carefully, integration 

proceeds much more smoothly because the interfaces define how the components will 

connect to and work with each other.  

Aspects Peculiar To Product Lines 

In a product line effort, software system integration occurs during the installation of core 

assets into the core asset base and also during the building of an individual product. In the 

former case, preintegrating as many of the software core assets as you can will make 



product-building a much more economical operation [Clements 01a, p. 118]. In either 

case, you need to consider integration early on in the development of the production plan 

and architecture for the entire product line. The goal is to make software system 

integration more straightforward and predictable.  

In a product line, the effort involved in software system integration lies along a spectrum. 

At one end, the effort is almost zero. If you know all of the products' variabilities in 

advance, you can produce an integrated parameterized template of a generic system with 

formal parameters. You can then generate final products by supplying the actual 

parameters specific to the individual product requirements and then launching the 

construction tool (along the lines of the Unix "make" utility). In this case, each product 

consists entirely of core components; no product-specific code exists. This is the "system 

generation" end of the integration spectrum.  

At the other end of the spectrum, considerable coding may be involved to bring together 

the right core components into a cohesive whole. Perhaps the components need to be 

wrapped, or perhaps new components need to be designed and implemented especially 

for the product. In this case, the integration more closely resembles that of a single-

system project.  

Most software product lines occupy a middle point on the spectrum. Obviously, the 

closer to the generation side of the spectrum you can align your production approach, the 

easier integration will be and the more products you will be able to turn out in a short 

period of time. For example, it used to take Cummins Inc. about a year to bring new 

engine-control software to the point of acceptance testing. Now, after adopting a product 

line approach, they can do it in about a week [Clements 01a, p. 417-442]  

However, circumstances may prevent you from achieving pure generation. Perhaps a new 

product has features you have not considered. Perhaps your application area prevents you 

from knowing all of the variabilities up front. Or perhaps the variabilities are so 

numerous or complex or interact with each other in such complicated ways, that building 

the construction tool will be too expensive. And it may be that you do not want to turn 

out many products in a short amount of time, but fewer products spread out over even 

periods. In that case, the construction tool may be less appealing.  

In software system integration for product lines, the cost of integration is amortized over 

many products. Once the product line scope, core assets, and production plan have been 

established in the core asset base, and a few systems have been produced from that base, 

most of the software system integration work has been done. The interfaces have been 

defined, and they work predictably. They have been tested. Components work with one 

another. In subsequent variations and adaptations of the product, there is relatively little 

software system integration effort when the variations and adaptations occur within 

components. Even when new components are being added with new interfaces, the 

models from previous interfaces can and should be followed, thus minimizing the work 

and the risk of integration. So, in a very real sense, products (after the first one or two) 



tend to be "preintegrated" such that there are few surprises when a system comes 

together.  

Application to Core Asset Development 

When core assets are developed, acquired, or mined, remember to take integration into 

account. Try to specify component interfaces not solely in natural language but in 

machine-checkable form. Using languages such as Interface Description Language (IDL), 

the syntactic or "signature" part of the interfaces can be specified early and kept current 

continuously throughout the development process. Early on, the bodies for these 

specifications can be stubbed out so that the code can be compiled and checked by a 

machine for consistency. Absence of consistency errors does not guarantee smooth 

integration—the components might assemble smoothly but still fail to work correctly 

together—but it's a good start.  

Evaluate any components you mine or acquire for their integrability and their granularity. 

A component is "integrable" if its interfaces (in the Parnas sense) are well defined and 

well documented so that it can potentially be wrapped for commonality with other 

components (if not used with assurance as is). Finally, remember that it is generally 

easier to build a system from small numbers of large, preintegrated pieces than from large 

numbers of small, unintegrated components. 

Application to Product Development 

A big benefit of product line practice is that software system integration costs tend to 

decrease for each of the subsequent products in the product line. If the production plan 

calls for the addition of components or internal changes in components, some integration 

may be required depending on the nature of the changes. Finally, in the system generation 

case, integration becomes a matter of providing values for the parameters and launching 

the construction tool. The key in all of these cases is that the integration occurs according 

to a preordained and tested scheme. 

Specific Practices 

Interface languages: Programming languages such as IDL allow you to define machine-

independent syntactic interfaces. Programming languages such as Ada allow you to 

define a compilable specification separate from the body. Ada programmers have found 

that keeping a continuously integrated system using full specifications and stubbed 

bodies decreases the integration time and costs dramatically. These languages and others 

do not allow specification of the full semantic interfaces of components, but catching 

signature-level integration bugs early is a win.  

This practice applies primarily to the development of new components but retains the 

leverage for subsequent products in a product line. One of the principal aspects of 

CelsiusTech's product line solution was the institutionalization of continuous integration 

using Ada rather than the more traditional all-at-once approach [Brownsword 96]. Most 



object-oriented design techniques prescribe the development of architectural frameworks 

and the use of patterns; both have been proven to support product lines and facilitate 

software integration.  

Wrapping: Wrapping, described as a specific practice in the "Mining Existing Assets" 

practice area, involves writing a small piece of software to mediate between the interface 

that a component user expects and the interface that the used component comes with. 

Wrapping is a technique for integrating components whose interfaces you do not control, 

such as components that you have mined or acquired from a third party [Seacord 01]. 

Middleware: An especially integrable kind of architecture employs a specific class of 

software products to be the intermediaries between user interfaces on the one hand and 

the data generators and repositories on the other. Such software is called "middleware" 

and is used in connection with Distributed Object Technology (DOT) [Wallnau 97]. 

There are three prominent examples of middleware standards and technology. One is the 

Common Object Request Broker Architecture (CORBA) and its various commercial 

implementations [OMG 96]. The second is the Distributed Component Object Model 

(DCOM). The third is the proprietary middleware solution that has grown around the 

Java programming language. Middleware is discussed in more detail in the "Architecture 

Definition" practice area. 

System generation: In some limited cases, a new product in a product line can be 

produced with no software system integration at all. These are cases in which all (or 

most) of the product line variability is known in advance. In these cases, it may be 

possible to have a template system from which a computer program produces the new 

products in the product line simply by specifying variabilities as actual parameters. Such 

a program is called a "system generator." One example of such a family of products 

would be an operating system in which all of the variabilities of the system are known 

ahead of time. Then, to generate the operating system, the "sysgen" program is simply 

provided with a list of system parameters (such as, processor, disk, and peripheral types, 

and their performance characteristics), and the program produces a tailored operating 

system rather than integrating all the components of an operating system.  

FAST generators: In Software Product-Line Engineering [Weiss 99], Weiss and Lai 

describe a process for building families of systems using generator technology. The 

Family-Oriented Abstraction, Specification, and Translation (FAST) process begins by 

explicitly identifying specific commonalities and variabilities among potential family 

members and then designing a small special-purpose language to express both. The 

language is used as the basis for building a generator. Turning out a new family member 

(product) is then simply a matter of describing the product in the language and 

"compiling" that description to produce the product.  

Practice Risks 

The major risks associated with software system integration include: 



• Natural-language interface documentation: Relying too heavily on natural 

language for system interface documentation and not relying heavily enough on 

the automated checking of system interfaces will lead to integration errors. 

Natural language interfaces are imprecise, incomplete, and error-prone. Carrying 

forward in the face of undetected interface errors increases the cost of correcting 

such errors and increases the overall cost of integration. Automated tools, 

however, are more oriented to syntactic checking and are less effective at 

checking race conditions, semantic mismatch, fidelity mismatch, and so on. Some 

interface specifications must still be done largely with natural language and are 

still error-prone. 

• Component granularity: There is a risk in trying to integrate components that 

are too small. The cost of integration is directly proportional to the number and 

size of the interfaces. If the components are small, the number of interfaces 

increases proportionally, if not geometrically, depending on the connections they 

have to each other. This leads to greatly increased testing time. One of the lessons 

of the CelsiusTech case study was that "CelsiusTech found it economically 

infeasible to integrate large systems at the Ada-unit level" [Brownsword 96]. 

Although the component granularity is dictated by the architecture, we capture the 

risk here, because this is where the consequence will make itself known. 

• Variation support: There is a risk in trying to make variations and adaptations 

that are too large or too different from existing components. When new 

components or subsystems are added, they must be integrated. Variations and 

adaptations within components are relatively inexpensive as far as system 

integration is concerned, but new components may cause architectural changes 

that structure the product in ways that cause integration problems. 

Further Reading 

[Weiss 99] describes the Family-Oriented Abstraction, Specification, and Translation 

(FAST) process, which includes a generator-building step that essentially obviates the 

integration phase of product development.  

[Wallnau 97] provides a nicely digestible overview of middleware.  

 

1. Our use of the word framework is meant to suggest a conceptual index, a frame of reference, for the information essential to 
success with software product lines. We are using the dictionary definition with no intended connections to current technical 
usages in the vein of architectural frameworks or application frameworks.  
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